Iterated Local Model

Iterated Global Model

Conclusion o

▲□▶▲□▶▲□▶▲□▶ □ のQ@

The Iterated Local Model for Social Networks

Erin Meger

Ryerson University Department of Mathematics PhD Candidate

PhD Thesis Defence - Mock 18 December 2018

Iterated Local Model

Iterated Global Model

Conclusion o

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Introduction

Complex Networks Deterministic Models

Iterated Local Model

Defining the Model Complex Network Properties Other Results

Iterated Global Model

Defining the Model Complex Network Properties Other Results

Iterated Global Model

Conclusion o

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Outline

Introduction

Complex Networks

Deterministic Models

Iterated Local Model

Defining the Model Complex Network Properties Other Results

Iterated Global Model

Defining the Model Complex Network Properties Other Results

Iterated Global Model

Conclusion o

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Complex Networks

Figure: The Web Graph

Iterated Global Model

Conclusion o

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Complex Networks

Four main properties:

- 1. Large-scale
- 2. Evolving over time
- 3. Power law degree distribution
- 4. Small world property

Iterated Global Model

Conclusion o

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Complex Networks

Four main properties:

- 1. Large-scale
- 2. Evolving over time
- 3. Power law degree distribution
- 4. Small world property
- 5. Densification

Iterated Global Model

Conclusion o

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Power Law Degree Distribution

Degree Distribution: { $N_{k,G}$: $0 \le k \le n$ }

$$N_{k,G} = |\{x \in V(G) : \deg_G(x) = k|$$

Power Law: for $1 < \beta \in \mathbb{R}$, and interval of $k \in \mathbb{N}$

$$\frac{N_{k,G}}{n}\approx k^{-\beta}.$$

Iterated Global Model

Conclusion o

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Power Law Degree Distribution

Degree Distribution: { $N_{k,G}$: $0 \le k \le n$ }

$$N_{k,G} = |\{x \in V(G) : \deg_G(x) = k|$$

Power Law: for $1 < \beta \in \mathbb{R}$, and interval of $k \in \mathbb{N}$

$$\frac{N_{k,G}}{n}\approx k^{-\beta}.$$

Introduction
0000000
000000

Iterated Global Model

Conclusion o

Small World Property

The average distance is

$$L(G) = \frac{\sum_{u,v \in V(G)} d(u,v)}{\binom{|V(G)|}{2}}$$

The clustering coefficient of G is defined as follows:

$$C(G) = \frac{1}{|V(G)|} \sum_{x \in V(G)} C_x(G), \quad \text{where} \quad C_x(G) = \frac{\left| E(G[N_G(x)]) \right|}{\binom{\deg(x)}{2}}$$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 >

Iterated Global Model

Conclusion o

Small World Property

The average distance between any pairs of nodes should be low in graphs with the small world property, specifically,

 $L(G_t) = O(\log \log n)$

Iterated Global Model

Conclusion o

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Small World Property

The average distance between any pairs of nodes should be low in graphs with the small world property, specifically,

$$L(G_t) = O(\log \log n)$$

The clustering coefficient describes the density of edges within the neighbourset of a vertex, and should be large.

Introduction	
000000	
000000	

Iterated Global Model

Conclusion o

Densification

A sequence of graphs $\{G_t : t \in \mathbb{N}\}$ densifies over time if

$$\lim_{t\to\infty}\frac{|E(G_t)|}{|V(G_t)|}\to\infty$$

- * ロ > * 母 > * ヨ > * ヨ > ・ ヨ ・ の < ぐ

Iterated Global Model

Conclusion o

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Outline

Introduction Complex Networks Deterministic Models

Iterated Local Model

Defining the Model Complex Network Properties Other Results

Iterated Global Model

Defining the Model Complex Network Properties Other Results

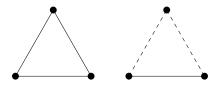
Iterated Global Model

Conclusion o

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Structural Balance Theory

Representing adversarial relationships with (-) and friendly relationships with (+), Structural Balance Theory says triads seek a positive product of edge signs, called closure.



Introduction 000000 00000	Iterated Local Model 000 0000 00	Iterated Global Model 000 000 00	Conclusion o
	П	т	

ILI

Iterated Local Transitivity Model (ILT) (2009, Bonato, Hadi, Horn, Prałat, Wang)

Input: G₀

To form G_t at time *t* clone each $x \in V(G_{t-1})$ by adding a new node x' such that

 $N_{G_t}(x') = N_{G_{t-1}}[x]$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Introduction
0000000
000000

Iterated Global Model

Conclusion o

Example of ILT

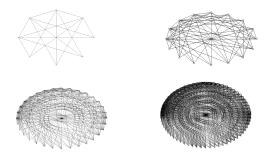


Figure: Example of ILT with $G_0 = C_4$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Iterated Global Model

Conclusion o

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Iterated Local Anti-Transitivity

Iterated Local Anti-Transitivity Model (ILAT) (2017, Bonato, Infeld, Pokhrel, Prałat)

Input: G₀

To form G_t at time *t* anti-clone each $x \in V(G_{t-1})$ by adding new node x^* such that

$$N_{G_t}(x^*) = V(G_{t-1}) \setminus N_{G_{t-1}}[x]$$

Introduction
0000000
000000

Iterated Global Model

Conclusion o

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Example of ILAT

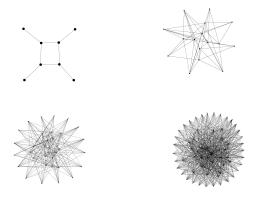


Figure: Example of ILAT with $G_0 = C_4$.

Iterated Local Model

•**00** 00000 Iterated Global Model

Conclusion o

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Outline

Introduction Complex Networks

Deterministic Models

Iterated Local Model

Defining the Model

Complex Network Properties Other Results

Iterated Global Model

Defining the Model Complex Network Properties Other Results

Introduction	Iterated Local Model	Iterated Global Model	Conclusion
000000	000 0000	000 000 00	0

ILM

Iterated Local Model (ILM) Input: G_0 and $S = \{b_i\}_{i \in \mathbb{N}}$, where $b_i \in \{0, 1\}$

To form $ILM_{t,S}(G_0)$ at time *t*:

• if $b_t = 1$ add a clone x' for each $x \in V(G_{t-1})$ with

$$N_{G_t}(x') = N_{G_{t-1}}[x]$$

• if $b_t = 0$ add an anti-clone x^* for each $x \in V(G_{t-1})$ with

$$N_{G_t}(x^*) = V(G_{t-1}) \setminus N_{G_{t-1}}[x]$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

Introduction	
0000000	
000000	

Iterated Global Model

Conclusion o

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Example of ILM

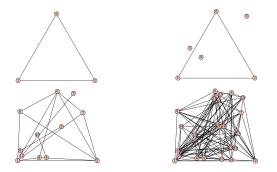


Figure: Example of ILM with $G_0 = K_3$ and S = (0, 1, 0, 1, ...)

Iterated Local Model

0000

Iterated Global Model

Conclusion o

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Outline

Introduction

Complex Networks Deterministic Models

Iterated Local Model

Defining the Model Complex Network Properties Other Results

Iterated Global Model

Defining the Model Complex Network Properties Other Results

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Size, Evolution, and Densification

Theorem Given any graph, G_0 , and any binary sequence, S, with at least one zero, then at time step t

$$|E(\mathsf{ILM}_{t,S}(G))| = \Theta\left(2^{t+\beta}\left(\frac{3}{2}\right)^{t-\beta}\right) = \Theta\left(2^{\beta}\left(\frac{3}{2}\right)^{t-\beta}n_t\right)$$

Where τ is the first index such that $s_{\tau} = 0$, and β is the largest index such that $s_{\beta} = 0$.

Iterated Global Model

Conclusion o

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Size, Evolution and Densification

So far, ILM exhibits 3 of the 4+1 complex network properties

- 1. Large Scale
- 2. Evolving over time
- 5. Densification

Iterated Local Model

Iterated Global Model

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Small WorldProperties

Theorem Given $G \neq K_1$ be a graph that is not the disjoint union of two cliques, and a sequence with at least two zeroes, then

 $diam(\mathsf{ILM}_{t,S}(G)) = 3$

Theorem Given a sequence with bounded gaps between zeroes, and k a constant such that there are no gaps of length k,

$$C(\mathsf{ILM}_{t,S}(G)) \ge (1+o(1))\frac{1}{2^{2k+4}}.$$

Iterated Local Model

Iterated Global Model

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Small WorldProperties

Theorem Given $G \neq K_1$ be a graph that is not the disjoint union of two cliques, and a sequence with at least two zeroes, then

 $diam(\mathsf{ILM}_{t,\mathcal{S}}(G)) = 3$

Theorem Given a sequence with bounded gaps between zeroes, and k a constant such that there are no gaps of length k,

$$C(\mathsf{ILM}_{t,S}(G)) \ge (1+o(1))\frac{1}{2^{2k+4}}.$$

The clustering coefficient is bounded away from zero.

Iterated Local Model

000

Iterated Global Model

Conclusion o

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Outline

Introduction

Complex Networks Deterministic Models

Iterated Local Model

Defining the Model Complex Network Properties Other Results

Iterated Global Model

Defining the Model Complex Network Properties Other Results

0.

Iterated Global Model

Conclusion o

▲□▶▲□▶▲□▶▲□▶ □ のQで

Structural Results

Theorem If *F* is a graph, then there exists some constant $t_0 = t_0(F)$ such that for all $t \ge t_0$, all graphs *G*, and all binary sequences *S*, *F* is an induced subgraph of $ILM_{t,S}(G)$

Other properties

- $\chi(G) + t 1 \le \chi(\mathsf{ILM}_{t,S}(G)) \le \chi(G) + t$
- γ(ILM_{t,S}(G)) ≤ 3
- $ILM_{t,S}(G)$ is hamiltonian

Iterated Local Model

Iterated Global Model

Conclusion o

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Outline

Introduction

Complex Networks Deterministic Models

Iterated Local Model

Defining the Model Complex Network Properties Other Results

Iterated Global Model

Defining the Model

Complex Network Properties Other Results

Introduction 000000 000000	Iterated Local Model 000 0000 00	Iterated Global Model ○●○ ○○○ ○○	Conclusion o
	(GM	

Iterated Global Model (IGM)

Input: G_0 and let $k \ge 1$ and integer

To form G_{t+1} from G_t at time t: for each set of vertices of cardinality $\lfloor \frac{1}{k}n_t \rfloor$, say S, add a new v_S that is adjacent to each vertex of S

(ロ) (同) (三) (三) (三) (○) (○)

Introduction
0000000
000000

Iterated Global Model

Conclusion o

▲□▶▲□▶▲□▶▲□▶ □ のQ@

The Half-Model

When k = 2 we call this The Half-Model.

We focus on this model and make use of Stirling's approximation for binomial coefficients

$$\binom{2n}{n} \sim \frac{2^{2n}}{\sqrt{\pi n}}$$

Iterated Local Model

Iterated Global Model

Conclusion o

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Outline

Introduction

Complex Networks Deterministic Models

Iterated Local Model

Defining the Model Complex Network Properties Other Results

Iterated Global Model

Defining the Model Complex Network Properties

Iterated Global Model

Conclusion o

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Size, Evolution, and Densification

Theorem

$$n_t \sim \begin{pmatrix} n_{t-1} \\ \lfloor \frac{n_{t-1}}{2} \rfloor \end{pmatrix}$$
 and $e_t \sim \begin{pmatrix} n_{t-1} \\ \lfloor \frac{n_{t-1}}{2} \rfloor \end{pmatrix} \cdot \lfloor \frac{n_{t-1}}{2} \rfloor$

Iterated Global Model

Conclusion o

Size, Evolution, and Densification

Theorem

$$n_t \sim \begin{pmatrix} n_{t-1} \\ \lfloor \frac{n_{t-1}}{2} \rfloor \end{pmatrix}$$
 and $e_t \sim \begin{pmatrix} n_{t-1} \\ \lfloor \frac{n_{t-1}}{2} \rfloor \end{pmatrix} \cdot \lfloor \frac{n_{t-1}}{2} \rfloor$

Theorem The half-model densifies.

Iterated Local Model

Iterated Global Model

Conclusion o

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Size, Evolution, and Densification

Theorem

$$n_t \sim \begin{pmatrix} n_{t-1} \\ \lfloor \frac{n_{t-1}}{2} \rfloor \end{pmatrix}$$
 and $e_t \sim \begin{pmatrix} n_{t-1} \\ \lfloor \frac{n_{t-1}}{2} \rfloor \end{pmatrix} \cdot \lfloor \frac{n_{t-1}}{2} \rfloor$

Theorem The half-model densifies.

To simplify the notation we will use

$$\alpha_t = \begin{pmatrix} n_t \\ \lfloor \frac{n_t}{2} \rfloor \end{pmatrix}$$

Introduction
0000000
000000

Iterated Global Model

Conclusion o

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Complex Network Properties

Theorem Graphs generated by the half-model satisfy $\lambda_t \sim 1$, where λ_t is the spectral gap of G_t .

Theorem Given G_0 with at least 4 vertices, and $t \ge 4$ the the diameter of the half model is at most 3.

Introduction
0000000
000000

Iterated Global Model

Conclusion o

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Outline

Introduction

Complex Networks Deterministic Models

Iterated Local Model

Defining the Model Complex Network Properties Other Results

Iterated Global Model

Defining the Model Complex Network Properties Other Results

Introduction
0000000
000000

Iterated Global Model

Conclusion o

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Structural Results

- The independence number of G_t is α_{t-1}
- $\omega(G_t) = \min\left(\left\lfloor \frac{n_{t-1}}{2} \right\rfloor + 1, \omega(G_0) + t\right)$
- $\chi(G_t) = \min\left(\chi(G_0) + t, \lfloor \frac{n_{t-1}}{2} \rfloor + 1\right)$
- The domination number of G_t is $\gamma(G_t) = \left\lceil \frac{n_{t-1}}{2} \right\rceil + 1$

Introduction
0000000
000000

Iterated Global Model

Conclusion

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Future Directions

- Graph Limits
- Clustering of IGM
- Cloning subgraphs
- Randomization of the models