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Complex Networks

Figure: The Web Graph
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Complex Networks

Four main properties:

1. Large-scale
2. Evolving over time
3. Power law degree distribution
4. Small world property

5. Densification
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Power Law Degree Distribution

Degree Distribution: {Nk ,G : 0 ≤ k ≤ n}

Nk ,G = |{x ∈ V (G) : degG(x) = k |

Power Law: for 1 < β ∈ R, and interval of k ∈ N

Nk ,G

n
≈ k−β .
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Small World Property

The average distance is

L(G) =

󰁓
u,v∈V (G) d(u, v)

󰀃|V (G)|
2

󰀄

The clustering coefficient of G is defined as follows:

C(G) =
1

|V (G)|
󰁛

x∈V (G)

Cx(G), where Cx(G) =

󰀏󰀏E
󰀃
G[NG(x)]

󰀄󰀏󰀏
󰀃deg(x)

2

󰀄 .
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Small World Property

The average distance between any pairs of nodes should be
low in graphs with the small world property, specifically,

L(Gt) = O (log log n)

The clustering coefficient describes the density of edges within
the neighbourset of a vertex, and should be large.
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Densification

A sequence of graphs{Gt : t ∈ N} densifies over time if

lim
t→∞

|E(Gt)|
|V (Gt)|

→ ∞
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Structural Balance Theory

Representing adversarial relationships with (−) and friendly
relationships with (+), Structural Balance Theory says triads
seek a positive product of edge signs, called closure.
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ILT

Iterated Local Transitivity Model (ILT) (2009, Bonato, Hadi,
Horn, Prałat, Wang)

Input: G0

To form Gt at time t clone each x ∈ V (Gt−1) by adding a new
node x ′ such that

NGt (x
′) = NGt−1 [x ]
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Example of ILT

Figure: Example of ILT with G0 = C4.
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Iterated Local Anti-Transitivity

Iterated Local Anti-Transitivity Model (ILAT) (2017, Bonato,
Infeld, Pokhrel, Prałat)

Input: G0

To form Gt at time t anti-clone each x ∈ V (Gt−1) by adding new
node x∗ such that

NGt (x
∗) = V (Gt−1)\NGt−1 [x ]
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Example of ILAT

Figure: Example of ILAT with G0 = C4.
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ILM

Iterated Local Model (ILM)
Input: G0 and S = {bi}i∈N, where bi ∈ {0, 1}

To form ILMt ,S(G0) at time t :
• if bt = 1 add a clone x ′ for each x ∈ V (Gt−1) with

NGt (x
′) = NGt−1 [x ]

• if bt = 0 add an anti-clone x∗ for each x ∈ V (Gt−1) with

NGt (x
∗) = V (Gt−1)\NGt−1 [x ]
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Example of ILM

Figure: Example of ILM with G0 = K3 and S = (0, 1, 0, 1, . . .)
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Size, Evolution, and Densification

Theorem Given any graph, G0, and any binary sequence, S,
with at least one zero, then at time step t

|E(ILMt ,S(G))| = Θ

󰀣
2t+β

󰀕
3
2

󰀖t−β
󰀤

= Θ

󰀣
2β

󰀕
3
2

󰀖t−β

nt

󰀤

Where τ is the first index such that sτ = 0, and β is the largest
index such that sβ = 0.
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Size, Evolution and Densification

So far, ILM exhibits 3 of the 4+1 complex network properties
1. Large Scale
2. Evolving over time
5. Densification
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Small WorldProperties

Theorem Given G ∕= K1 be a graph that is not the disjoint union
of two cliques, and a sequence with at least two zeroes, then

diam(ILMt ,S(G)) = 3

Theorem Given a sequence with bounded gaps between
zeroes, and k a constant such that there are no gaps of length
k ,

C(ILMt ,S(G)) ≥ (1 + o(1))
1

22k+4 .

The clustering coefficient is bounded away from zero.
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Structural Results

Theorem If F is a graph, then there exists some constant
t0 = t0(F ) such that for all t ≥ t0, all graphs G, and all binary
sequences S, F is an induced subgraph of ILMt ,S(G)

Other properties

• χ(G) + t − 1 ≤ χ
󰀃
ILMt ,S(G)

󰀄
≤ χ(G) + t

• γ(ILMt ,S(G)) ≤ 3
• ILMt ,S(G) is hamiltonian
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IGM

Iterated Global Model (IGM)
Input: G0 and let k ≥ 1 and integer

To form Gt+1 from Gt at time t : for each set of vertices of
cardinality ⌊ 1

k nt⌋, say S, add a new vS that is adjacent to each
vertex of S
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The Half-Model

When k = 2 we call this The Half-Model.

We focus on this model and make use of Stirling’s
approximation for binomial coefficients

󰀕
2n
n

󰀖
∼ 22n

√
πn
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Size, Evolution, and Densification

Theorem

nt ∼
󰀕

nt−1󰀇nt−1
2

󰀈
󰀖

and et ∼
󰀕

nt−1󰀇nt−1
2

󰀈
󰀖
·
󰁭nt−1

2

󰁮

Theorem The half-model densifies.

To simplify the notation we will use

αt =

󰀕
nt󰀇nt
2

󰀈
󰀖
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Complex Network Properties

Theorem Graphs generated by the half-model satisfy λt ∼ 1,
where λt is the spectral gap of Gt .

Theorem Given G0 with at least 4 vertices, and t ≥ 4 the the
diameter of the half model is at most 3.
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Structural Results

• The independence number of Gt is αt−1

• ω(Gt) = min
󰀃󰀇nt−1

2

󰀈
+ 1,ω(G0) + t

󰀄

• χ(Gt) = min
󰀃
χ(G0) + t ,

󰀇nt−1
2

󰀈
+ 1

󰀄

• The domination number of Gt is γ(Gt) =
󰀉nt−1

2

󰀊
+ 1
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Future Directions

• Graph Limits
• Clustering of IGM
• Cloning subgraphs
• Randomization of the models


