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Complex Networks

Figure: The Web Graph
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Complex Networks

Four main properties:

1. Large-scale

2. Evolving over time

3. Power law degree distribution
4. Small world property

Conclusion
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Power Law Degree Distribution

Degree Distribution: {Nk g : 0 < k < n}
Nk.g = [{x € V(G) : degg(x) = K|
Power Law: for 1 < 8 € R, and interval of k € N

—Nk’G ~ k="
n
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Small World Property

The average distance is

Zu,veV(G) d(ua V)
RN

The clustering coefficient of G is defined as follows:

A _ |E(GINa(x)])|
C(G)_|V(G)|XGZV(:G)CX(G), where CX(G)_—(de w0
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Densification

A sequence of graphs{G; : t € N} densifies over time if

. |E(Gy)]
VG

Conclusion
[e]e]



Introduction Defining the Model Results Conclusion

00000 (o] 0000000 (e}
@0000 000

Structural Balance Theory

Representing adversarial relationships with (—) and friendly
relationships with (+), Structural Balance Theory says triads
seek a positive product of edge signs, called closure.
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ILT

Iterated Local Transitivity Model (ILT) (2009, Bonato, Hadi,
Horn, Pratat, Wang)

Input: Gy

To form G at time ¢ clone each x € V(G;_1) by adding a new
node x’ such that

NG;(X/) = Nth [X]
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Example of ILT

Figure: Example of ILT with Gy = Cy4.
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Iterated Local Anti-Transitivity

Iterated Local Anti-Transitivity Model (ILAT) (2017, Bonato,
Infeld, Pokhrel, Pratat)

Input: Gy

To form G at time t anti-clone each x € V(G;_4) by adding new
node x* such that

Ng,(x*) = V(Gt-1)\Ng, ,[x]



Introduction Defining the Model Results Conclusion
00000 (e]e) 0000000 [e]e]
000

Example of ILAT

Figure: Example of ILAT with Gy = Cs.
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ILM

Iterated Local Model (ILM) (2019+, Bonato, Chuangpishit,
English, Kay, M.)
Input: Go and S = {b;}cn, Where b; € {0,1}

To form ILM; s(Gp) at time t:
e if by =1 add a clone x’ for each x € V(G;_1) with
NGt(X/) = NG,,1 [X]
e if by = 0 add an anti-clone x* for each x € V(G;_1) with

Ne,(x*) = V(Gt-1)\Ng,_, [X]
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Example of ILM

Figure: Example of ILM with Gp = Kz and S = (0,1,0,1,...)
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Size, Evolution, and Densification

Theorem (2019+, BCEKM) Given any graph, Gy, and any
binary sequence, S, with at least one zero, then at time step ¢

|E(ILM; 5(G))| = © <2f+5 <g>t_ﬁ> =0 (25 (g)t_ﬁ nt)

Where 7 is the first index such that s = 0, and 3 is the largest
index such that sg = 0.
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Size, Evolution, and Densification

Consider the degrees of vertices in ILM

ss=0 st =1

x e V(Gi—q) | nt—1 2deg;_4(x) + 1

X ¢ V(Gi—1) | N—1 —deg;_4(x) —1 | deg;_q(x) +1
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Size, Evolution and Densification

So far, ILM exhibits 3 of the 4+1 complex network properties
1. Large Scale

2. Evolving over time

5. Densification
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Low Diameter

Theorem (2019+, BCEKM) Given G # K be a graph that is not
the disjoint union of two cliques, and a sequence with at least
two zeroes, then

diam(ILM,; 5(G)) = 3
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Low Diameter

Proof Sketch

e When G has domination at least 3, an Anti-Transitive step
will ensure the diameter is less than 3 regardless of the
starting diameter
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Low Diameter

Proof Sketch

e When G has domination at least 3, an Anti-Transitive step
will ensure the diameter is less than 3 regardless of the
starting diameter

¢ Transitive steps do not change the diameter
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Low Diameter

Proof Sketch

e When G has domination at least 3, an Anti-Transitive step
will ensure the diameter is less than 3 regardless of the
starting diameter

¢ Transitive steps do not change the diameter
¢ The graph is connected and has no dominating vertex
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Clustering

Theorem (2019+, BCEKM) Given a sequence with bounded
gaps between zeroes, and k a constant such that there are no
gaps of length k,

C(ILM, 5(G)) > (1 + 0(1)) 5505
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Clustering

Theorem (2019+, BCEKM) Given a sequence with bounded
gaps between zeroes, and k a constant such that there are no
gaps of length k,

C(ILM, 5(G)) > (1 + 0(1)) 5505

The clustering coefficient is bounded away from zero.
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Small World

With non-zero clustering and low diameter, ILM exhibits its 4th
and final property

4. Small World Property
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Induced Subgraphs

Theorem (2019+, BCEKM) If F is a graph, then there exists
some constant fy = fy(F) such that for all t > t,, all graphs G,
and all binary sequences S, F is an induced subgraph of
ILM; s(G).
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Induced Subgraphs

Theorem (2019+, BCEKM) If F is a graph, then there exists
some constant fy = fy(F) such that for all t > t,, all graphs G,
and all binary sequences S, F is an induced subgraph of
ILM; s(G).

Proof by Picture :)



Introduction Defining the Model Results Conclusion

00000 (o] 0000000 (e}
00000 (] lo}

Hamiltonicity

Theorem (2019+, BCEKM)
Let G # K, and a binary sequence with at least two
non-consecutive 0s, then for all ILM; s(G) is Hamiltonian.
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Other Structural Properties

For the model with certain restrictions on the input sequence
and graph:

* X(G)+t—1<x(ILM;s(G)) < x(G) +t

* 1(ILM;5(G)) < 3
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Future Directions

Graph Limits

Domination number in remaining cases
Randomization of the model

Improve Clustering, still unknown for ILAT
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