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Introduction to Cops and Robbers

Definition
Cops and Robbers is a game on a graph, G, with two players,
the set of cops, C and the single robber, R, the game plays as
follows:

• C play on any vertices of G
• R plays on any unoccupied vertex of G
• Players alternate turns moving along edges
• C win by landing on the vertex occupied by R, capture
• R wins by evading capture indefinitely
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Example of the Game
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Copwin

Definition
The cop number of a graph, c(G) is the fewest number of cops
required to capture the robber.

Definition
A graph is called copwin if one cop can successfully capture
the robber, that is c(G) = 1.

corner: u is a corner if there exists some v such that
N[u] ⊆ N[v ]

Theorem (N+W [6])
A graph is copwin if and only if there is some sequence of
deleting corners that results in a single vertex
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Nowakowski Winkler Characterization

For any graph, G, we define a binary relation ≤α, for each
α ∈ N, on the set of vertices of G.

• x ≤0 y ⇐⇒ x = y
• x ≤α y ⇐⇒ for all u ∈ N(x) there is some v ∈ N(y) such

that u ≤p v with p < α.

Theorem (N+W[6])
G is copwin if and only if x ≤ y for all x , y ∈ V (G).
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Meyniel’s Conjecture

For some integer n, let c(n) be the maximum cop number c(G)
over all graphs G on n nodes.

Conjecture (Meyniel’s Conjecture)

c(n) = O(
√

n)
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Other Bounds

Asymptotic Bounds:

• Frankl c(n) ≤ (1 + o(1))n
log log n
log n

• Chinifooroshan c(n) = O(
n

log n
)

Probabilistic Bounds:
• Lu and Peng, Scott and Sudakov, Frieze et al.

c(n) = O(
n

2(1−o(1))
√

log2 n
)

Conjecture (Soft Meyniel Conjecture)
For a fixed constant c > 0

c(n) = O(n1−c)
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Variants

• Original Game [Quilliot ’78, Nowakowski and Winkler ’83]
• k -cop-win [Aigner and Fromme ’84]

• Variants:

• tandem-win
• photo-radar
• lazy cops
• distance k

• zombies
• decoy
•
•
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Cops, Robbers and Barricades

Definition
Cops, Robbers, and Barricades is a game on a graph, G, with
two players, the set of cops, C and the single robber, R, the
game plays as follows:

• C play on any vertices of G
• R plays on any unoccupied vertex of G
• R may build a barricade on an unoccupied vertex.

Barricades block all players from occupying that vertex.
• Players alternate turns moving along edges
• C win by landing on the vertex occupied by R, capture
• R wins by evading capture indefinitely
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Cops, Robbers, and Barricades

Give power to the Robber:
• Robber can build a single barricade on an unoccupied

adjacent vertex instead of moving
• Neither Cop nor Robber can enter the barricade

Dynamic graph:
• Barricade is vertex deletion

Generalize: Robber can build b barricades at ‘any’ location.
Barricade Rules: permissible locations for the barricades.
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Example of the Game
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Example of the Game

□ CR
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Barricade-Cop Number

Definition
The Barricade-cop number of a graph, cB(G), is the minimum
number of cops required to capture the robber.

Theorem
For any graph G, c(G) ≤ cB(G).
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Results

Theorem
For a path with n nodes, Pn, cB(Pn) = ⌈ (n−2)

7 ⌉.

Theorem
For any tree, T , let ℓ be the set of leaves of T , then
cB(T ) ≥ |N2(ℓ)|.
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Results

Theorem
A tree with a root, and having each branch of length 1 or 2,
called a spider, is barricade-cop-win.

Theorem
The only trees that are barricade-cop-win are spiders.
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M-ary Trees

Definition
A tree is called m-ary if each vertex has at most m children.

A tree is said to be full m-ary, if every non-leaf has exactly m
children.

The height of a tree, h, is the number of edges in a longest path
from the root to any leaf.



Introduction to Cops and Robbers Cops, Robbers, and Barricades Characterization References

M-ary Trees

Theorem
For a full m-ary tree, T with height h, we let c ≤ ⌈h−m−3

2m+3 ⌉, then,

cB(T ) ≤
c󰁛

i=1

mi(2m+4)+m+1

Place a row full of cops at height h − 2 (ie. the grandparents of
the leaves), and then place full rows of cops at every 2m + 3
rows, until we are at height m + 1 or less. This is called the row
strategy.
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M-ary Trees

Distance Strategey: Place each cop so that they are no closer
than 4 vertices away from any other

Theorem
For any tree, T , cB(T ) ≤ ⌈n

4⌉.

Conjecture
For a tree, T ,

cB(T ) = max

󰀣
⌈n

4
⌉,

c󰁛

i=1

mi(2m+4)+m+1

󰀤
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Diameter

Definition
The diameter of a graph G, is the maximum length shortest
path between any two vertices, x , y ∈ V (G).

Theorem
If G has diameter 2, cB(G) = c(G).
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Domination

Is this graph parameter similar to domination number?

m - size of each
partition

d - number of
partitions

m ≥ ⌊d
2 ⌋

cB(G) = 2 but γ(G) → ∞
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The Characterization

Definition (Some Notation)

• Barricade Set Bk : the set of vertices containing all
barricades at round k

• Barricade Sequence: the sequence {B1,B2, ...,Bk}
• Barricade Graph Gk : the graph G with Bk removed
• comp(R): the component of Gk containing R
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The Characterization

Using the relation, ≤ as defined in the Nowakowski, Winkler
characterization.

Theorem
A graph G is barricade-cop-win if and only if given any
sequence of Bk , there is some vertex u ∈ NGk−1(C) with
u ∈ compGk (R), such that u ≤ω R for some finite ω.

This gives us an algorithm for determining whether a graph is
barricade cop win. Although it is not in poly-time like the
Nowakowski Winkler algorithm. [6] [4] [5]
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Thank You
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