Cops, Robbers, and Barricades
 A new variant of a classic game

Erin Meger

Ph.D. Candidate
Supervisor: Dr. A. Bonato
Ryerson University

CAT Seminar
14 Nov 2019

Outline

Introduction to Cops and Robbers
Definition of the Game
Copwin

Cops, Robbers, and Barricades
Definition of the Game
Example of the Game
Results

Characterization
Barricade Cop Win Characterization

Introduction to Cops and Robbers

Definition

Cops and Robbers is a game on a graph, G, with two players, the set of cops, C and the single robber, R, the game plays as follows:

- C play on any vertices of G
- R plays on any unoccupied vertex of G
- Players alternate turns moving along edges
- C win by landing on the vertex occupied by R, capture
- R wins by evading capture indefinitely

Example of the Game

Copwin

Definition

The cop number of a graph, $c(G)$ is the fewest number of cops required to capture the robber.

Copwin

Definition

The cop number of a graph, $c(G)$ is the fewest number of cops required to capture the robber.

Definition
A graph is called copwin if one cop can successfully capture the robber, that is $c(G)=1$.

Copwin

Definition

The cop number of a graph, $c(G)$ is the fewest number of cops required to capture the robber.

Definition
A graph is called copwin if one cop can successfully capture the robber, that is $c(G)=1$.
corner: u is a corner if there exists some v such that $N[u] \subseteq N[v]$

Copwin

Definition

The cop number of a graph, $c(G)$ is the fewest number of cops required to capture the robber.

Definition
A graph is called copwin if one cop can successfully capture the robber, that is $c(G)=1$.
corner: u is a corner if there exists some v such that $N[u] \subseteq N[v]$

Theorem (N+W [6])

A graph is copwin if and only if there is some sequence of deleting corners that results in a single vertex

Nowakowski Winkler Characterization

For any graph, \mathcal{G}, we define a binary relation \leq_{α}, for each $\alpha \in \mathbb{N}$, on the set of vertices of G.

- $x \leq_{0} y \Longleftrightarrow x=y$
- $x \leq_{\alpha} y \Longleftrightarrow$ for all $u \in N(x)$ there is some $v \in N(y)$ such that $u \leq_{p} v$ with $p<\alpha$.

Theorem ($\mathrm{N}+\mathrm{W}[6]$)
G is copwin if and only if $x \leq y$ for all $x, y \in V(G)$.

Meyniel's Conjecture

For some integer n, let $c(n)$ be the maximum cop number $c(G)$ over all graphs G on n nodes.
Conjecture (Meyniel's Conjecture)

$$
c(n)=O(\sqrt{n})
$$

Other Bounds

Asymptotic Bounds:

- Frankl $c(n) \leq(1+o(1)) n \frac{\log \log n}{\log n}$
- Chinifooroshan $c(n)=O\left(\frac{n}{\log n}\right)$

Other Bounds

Asymptotic Bounds:

- Frankl $c(n) \leq(1+o(1)) n \frac{\log \log n}{\log n}$
- Chinifooroshan $c(n)=O\left(\frac{n}{\log n}\right)$

Probabilistic Bounds:

- Lu and Peng, Scott and Sudakov, Frieze et al.

$$
c(n)=O\left(\frac{n}{2^{(1-o(1)) \sqrt{\log _{2} n}}}\right)
$$

Other Bounds

Asymptotic Bounds:

- Frankl $c(n) \leq(1+o(1)) n \frac{\log \log n}{\log n}$
- Chinifooroshan $c(n)=O\left(\frac{n}{\log n}\right)$

Probabilistic Bounds:

- Lu and Peng, Scott and Sudakov, Frieze et al.

$$
c(n)=O\left(\frac{n}{2^{(1-o(1)) \sqrt{\log _{2} n}}}\right)
$$

Conjecture (Soft Meyniel Conjecture)
For a fixed constant $c>0$

$$
c(n)=O\left(n^{1-c}\right)
$$

Variants

- Original Game [Quilliot '78, Nowakowski and Winkler '83]
- k-cop-win [Aigner and Fromme '84]

Variants

- Original Game [Quilliot '78, Nowakowski and Winkler '83]
- k-cop-win [Aigner and Fromme '84]
- Variants:
- tandem-win
- photo-radar
- lazy cops
- distance k
- zombies
- decoy
-
-

Cops, Robbers and Barricades

Definition

Cops, Robbers, and Barricades is a game on a graph, G, with two players, the set of cops, C and the single robber, R, the game plays as follows:

- C play on any vertices of G
- R plays on any unoccupied vertex of G
- R may build a barricade on an unoccupied vertex. Barricades block all players from occupying that vertex.
- Players alternate turns moving along edges
- C win by landing on the vertex occupied by R, capture
- R wins by evading capture indefinitely

Cops, Robbers, and Barricades

Give power to the Robber:

- Robber can build a single barricade on an unoccupied adjacent vertex instead of moving
- Neither Cop nor Robber can enter the barricade

Cops, Robbers, and Barricades

Give power to the Robber:

- Robber can build a single barricade on an unoccupied adjacent vertex instead of moving
- Neither Cop nor Robber can enter the barricade

Dynamic graph:

- Barricade is vertex deletion

Cops, Robbers, and Barricades

Give power to the Robber:

- Robber can build a single barricade on an unoccupied adjacent vertex instead of moving
- Neither Cop nor Robber can enter the barricade

Dynamic graph:

- Barricade is vertex deletion

Generalize: Robber can build b barricades at 'any' location. Barricade Rules: permissible locations for the barricades.

Example of the Game

Barricade-Cop Number

Definition
The Barricade-cop number of a graph, $c_{B}(G)$, is the minimum number of cops required to capture the robber.

Barricade-Cop Number

Definition
The Barricade-cop number of a graph, $c_{B}(G)$, is the minimum number of cops required to capture the robber.

Theorem
For any graph $G, c(G) \leq c_{B}(G)$.

Results

Theorem
For a path with n nodes, $P_{n}, c_{B}\left(P_{n}\right)=\left\lceil\frac{(n-2)}{7}\right\rceil$.

Results

Theorem
For a path with n nodes, $P_{n}, c_{B}\left(P_{n}\right)=\left\lceil\frac{(n-2)}{7}\right\rceil$.
Theorem
For any tree, T, let ℓ be the set of leaves of T, then $c_{B}(T) \geq\left|N_{2}(\ell)\right|$.

Results

Theorem
A tree with a root, and having each branch of length 1 or 2, called a spider, is barricade-cop-win.

Results

Theorem
A tree with a root, and having each branch of length 1 or 2, called a spider, is barricade-cop-win.

Theorem
The only trees that are barricade-cop-win are spiders.

M-ary Trees

Definition

A tree is called m-ary if each vertex has at most m children.
A tree is said to be full m-ary, if every non-leaf has exactly m children.

The height of a tree, h, is the number of edges in a longest path from the root to any leaf.

M-ary Trees

Theorem
For a full m-ary tree, T with height h, we let $c \leq\left\lceil\frac{h-m-3}{2 m+3}\right\rceil$, then,

$$
c_{B}(T) \leq \sum_{i=1}^{c} m^{i(2 m+4)+m+1}
$$

M-ary Trees

Theorem
For a full m-ary tree, T with height h, we let $c \leq\left\lceil\frac{h-m-3}{2 m+3}\right\rceil$, then,

$$
c_{B}(T) \leq \sum_{i=1}^{c} m^{i(2 m+4)+m+1}
$$

Place a row full of cops at height $h-2$ (ie. the grandparents of the leaves), and then place full rows of cops at every $2 m+3$ rows, until we are at height $m+1$ or less. This is called the row strategy.

M-ary Trees

Distance Strategey: Place each cop so that they are no closer than 4 vertices away from any other

M-ary Trees

Distance Strategey: Place each cop so that they are no closer than 4 vertices away from any other

Theorem
For any tree, $T, c_{B}(T) \leq\left\lceil\frac{n}{4}\right\rceil$.

M-ary Trees

Distance Strategey: Place each cop so that they are no closer than 4 vertices away from any other
Theorem
For any tree, $T, c_{B}(T) \leq\left\lceil\frac{n}{4}\right\rceil$.
Conjecture
For a tree, T,

$$
c_{B}(T)=\max \left(\left\lceil\frac{n}{4}\right\rceil, \sum_{i=1}^{c} m^{i(2 m+4)+m+1}\right)
$$

Diameter

Definition

The diameter of a graph G, is the maximum length shortest path between any two vertices, $x, y \in V(G)$.

Theorem
If G has diameter $2, c_{B}(G)=c(G)$.

Domination

Is this graph parameter similar to domination number?

Domination

Is this graph parameter similar to domination number?

Domination

Is this graph parameter similar to domination number?

$m-$ size of each
partition
$d-$ number of
partitions

Domination

Is this graph parameter similar to domination number?

$$
\begin{gathered}
m-\text { size of each } \\
\text { partition } \\
d-\text { number of } \\
\quad \text { partitions } \\
m \geq\left\lfloor\frac{d}{2}\right\rfloor
\end{gathered}
$$

Domination

Is this graph parameter similar to domination number?

$$
\begin{gathered}
m-\text { size of each } \\
\text { partition } \\
d-\text { number of } \\
\quad \text { partitions } \\
m \geq\left\lfloor\frac{d}{2}\right\rfloor
\end{gathered}
$$

$c_{B}(G)=2$ but $\gamma(G) \rightarrow \infty$

The Characterization

Definition (Some Notation)

- Barricade Set B_{k} : the set of vertices containing all barricades at round k
- Barricade Sequence: the sequence $\left\{B_{1}, B_{2}, \ldots, B_{k}\right\}$
- Barricade Graph G_{k} : the graph G with B_{k} removed
- $\operatorname{comp}(R)$: the component of G_{k} containing R

The Characterization

Using the relation, \leq as defined in the Nowakowski, Winkler characterization.

Theorem
A graph G is barricade-cop-win if and only if given any sequence of B_{k}, there is some vertex $u \in N_{G_{k-1}}(C)$ with $u \in \operatorname{comp}_{G_{k}}(R)$, such that $u \leq_{\omega} R$ for some finite ω.

The Characterization

Using the relation, \leq as defined in the Nowakowski, Winkler characterization.

Theorem
A graph G is barricade-cop-win if and only if given any sequence of B_{k}, there is some vertex $u \in N_{G_{k-1}}(C)$ with $u \in \operatorname{comp}_{G_{k}}(R)$, such that $u \leq_{\omega} R$ for some finite ω.

This gives us an algorithm for determining whether a graph is barricade cop win. Although it is not in poly-time like the Nowakowski Winkler algorithm. [6] [4] [5]

Thank You

References

M．Aigner，M．Fromme，A game of cops and robbers．Discrete Applied Mathematics 8 （1984）1－11．

A．Berarducci，B．Intrigilia，On the Cop Number of a Graph，Advances in Applied Mathematics 14 （1993）398－403．

A．Bonato，WHAT IS ．．．Cop Number？Notices of the American Mathematical Society 59 （2012）1100－1101．
R A．Bonato，G．McGillivary，Characterizations and algorithms for generalized Cops and Robbers games Contributions in Discrete Math （accepted）

B．Kinnersley，Cops and Robbers is EXPTIME－complete ArXiv： 1309．5405v2
R R．J．Nowakowski，P．Winkler，Vertex－to－vertex pursuit in a graph， Discrete Mathematics 43 （1983）235－239．

A．Quilliot，Jeux et pointes fixes sur les graphes，Thèse de 3ème cycle，， Université de Paris VI，（1978）．

