Cops, Robbers, and Barricades

Characterization

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

References o

Cops, Robbers, and Barricades

A new variant of a classic game

Erin Meger

Ph.D. Candidate Supervisor: Dr. A. Bonato Ryerson University

> CAT Seminar 14 Nov 2019

Cops, Robbers, and Barricades

Characterization

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

References o

Outline

Introduction to Cops and Robbers Definition of the Game Copwin

Cops, Robbers, and Barricades

Definition of the Game Example of the Game Results

Characterization Barricade Cop Win Characterization

Cops, Robbers, and Barricades

Characterization

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

References o

Introduction to Cops and Robbers

Definition

Cops and Robbers is a game on a graph, G, with two players, the set of cops, C and the single robber, R, the game plays as follows:

- C play on any vertices of G
- R plays on any unoccupied vertex of G
- Players alternate turns moving along edges
- C win by landing on the vertex occupied by R, capture
- R wins by evading capture indefinitely

Cops, Robbers, and Barricades

Characterization

References o

Example of the Game

▲□▶▲圖▶▲≧▶▲≧▶ 差 のへで

Cops, Robbers, and Barricades

Characterization

References o

Example of the Game

▲□▶▲□▶▲□▶▲□▶ □ のへで

Cops, Robbers, and Barricades

Characterization

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

References o

Cops, Robbers, and Barricades

Characterization

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

References o

Cops, Robbers, and Barricades

Characterization

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

References o

Cops, Robbers, and Barricades

Characterization

References o

Cops, Robbers, and Barricades

Characterization

References o

Example of the Game

| ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○ ○

Cops, Robbers, and Barricades

Characterization

▲□▶▲□▶▲□▶▲□▶ □ のQ@

References o

Copwin

Definition

The cop number of a graph, c(G) is the fewest number of cops required to capture the robber.

Cops, Robbers, and Barricades

Characterization

▲□▶▲□▶▲□▶▲□▶ □ のQ@

References o

Copwin

Definition

The cop number of a graph, c(G) is the fewest number of cops required to capture the robber.

Definition

A graph is called copwin if one cop can successfully capture the robber, that is c(G) = 1.

Cops, Robbers, and Barricades

Characterization

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

References o

Copwin

Definition

The cop number of a graph, c(G) is the fewest number of cops required to capture the robber.

Definition

A graph is called copwin if one cop can successfully capture the robber, that is c(G) = 1.

corner: u is a corner if there exists some v such that $N[u] \subseteq N[v]$

Cops, Robbers, and Barricades

Characterization

References o

Copwin

Definition

The cop number of a graph, c(G) is the fewest number of cops required to capture the robber.

Definition

A graph is called copwin if one cop can successfully capture the robber, that is c(G) = 1.

corner: *u* is a corner if there exists some *v* such that $N[u] \subseteq N[v]$

Theorem (N+W [6])

A graph is copwin if and only if there is some sequence of deleting corners that results in a single vertex Cops, Robbers, and Barricades

Characterization

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

References o

Nowakowski Winkler Characterization

For any graph, *G*, we define a binary relation \leq_{α} , for each $\alpha \in \mathbb{N}$, on the set of vertices of *G*.

•
$$x \leq_0 y \iff x = y$$

• $x \leq_{\alpha} y \iff$ for all $u \in N(x)$ there is some $v \in N(y)$ such that $u \leq_{p} v$ with $p < \alpha$.

Theorem (N+W[6])

G is copwin if and only if $x \leq y$ for all $x, y \in V(G)$.

Cops, Robbers, and Barricades

Characterization

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

References o

Meyniel's Conjecture

For some integer *n*, let c(n) be the maximum cop number c(G) over all graphs *G* on *n* nodes.

Conjecture (Meyniel's Conjecture)

 $c(n) = O(\sqrt{n})$

Cops, Robbers, and Barricades

Characterization 000

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

References o

Other Bounds

Asymptotic Bounds:

- Frankl $c(n) \leq (1 + o(1))n \frac{\log \log n}{\log n}$
- Chinifooroshan $c(n) = O(\frac{n}{\log n})$

Cops, Robbers, and Barricades

Characterization

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

References o

Other Bounds

Asymptotic Bounds:

- Frankl $c(n) \leq (1 + o(1))n \frac{\log \log n}{\log n}$
- Chinifooroshan $c(n) = O(\frac{n}{\log n})$

Probabilistic Bounds:

• Lu and Peng, Scott and Sudakov, Frieze et al. $c(n) = O(\frac{n}{2^{(1-o(1))\sqrt{\log_2 n}}})$

Cops, Robbers, and Barricades

Characterization

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

References o

Other Bounds

Asymptotic Bounds:

- Frankl $c(n) \leq (1 + o(1))n \frac{\log \log n}{\log n}$
- Chinifooroshan $c(n) = O(\frac{n}{\log n})$

Probabilistic Bounds:

• Lu and Peng, Scott and Sudakov, Frieze et al. $c(n) = O(\frac{n}{2^{(1-o(1))\sqrt{\log_2 n}}})$

Conjecture (Soft Meyniel Conjecture)

For a fixed constant c > 0

$$c(n)=O(n^{1-c})$$

Cops, Robbers, and Barricades

Characterization

▲□▶▲□▶▲□▶▲□▶ □ のQ@

References o

Variants

- Original Game [Quilliot '78, Nowakowski and Winkler '83]
- k-cop-win [Aigner and Fromme '84]

Cops, Robbers, and Barricades

Characterization

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

References o

Variants

- Original Game [Quilliot '78, Nowakowski and Winkler '83]
- k-cop-win [Aigner and Fromme '84]
- Variants:
 - tandem-win
 - photo-radar
 - lazy cops
 - distance k

- zombies
- decoy
- •
- ٠

Cops, Robbers, and Barricades ●○ ○○○○○○ ○○○○○○ Characterization 000

References o

Cops, Robbers and Barricades

Definition

Cops, Robbers, and Barricades is a game on a graph, G, with two players, the set of cops, C and the single robber, R, the game plays as follows:

- C play on any vertices of G
- R plays on any unoccupied vertex of G
- R may build a barricade on an unoccupied vertex. Barricades block all players from occupying that vertex.
- Players alternate turns moving along edges
- C win by landing on the vertex occupied by R, capture
- R wins by evading capture indefinitely

Cops, Robbers, and Barricades ○● ○○○○○○○ ○○○○○○○ Characterization

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

References o

Cops, Robbers, and Barricades

Give power to the Robber:

- Robber can build a single barricade on an unoccupied adjacent vertex instead of moving
- Neither Cop nor Robber can enter the barricade

Cops, Robbers, and Barricades ○● ○○○○○○ ○○○○○○ Characterization

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

References o

Cops, Robbers, and Barricades

Give power to the Robber:

- Robber can build a single barricade on an unoccupied adjacent vertex instead of moving
- Neither Cop nor Robber can enter the barricade

Dynamic graph:

Barricade is vertex deletion

Cops, Robbers, and Barricades ○● ○○○○○○ ○○○○○○ Characterization

References o

Cops, Robbers, and Barricades

Give power to the Robber:

- Robber can build a single barricade on an unoccupied adjacent vertex instead of moving
- Neither Cop nor Robber can enter the barricade

Dynamic graph:

Barricade is vertex deletion

Generalize: Robber can build *b* barricades at 'any' location. Barricade Rules: permissible locations for the barricades.

Characterization

References o

Example of the Game

▲□▶▲圖▶▲≧▶▲≧▶ 差 のへで

Cops, Robbers, and Barricades

Characterization

References o

Example of the Game

▲□▶▲圖▶▲≧▶▲≧▶ 差 のへで

Cops, Robbers, and Barricades

Characterization

References o

Example of the Game

▲□▶▲□▶▲□▶▲□▶ □ のへで

Cops, Robbers, and Barricades

Characterization

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

References o

Cops, Robbers, and Barricades

Characterization

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

References o

Cops, Robbers, and Barricades

Characterization

References o

Example of the Game

▲□▶▲圖▶▲≧▶▲≧▶ 差 のへで

Cops, Robbers, and Barricades

Characterization

▲□▶▲□▶▲□▶▲□▶ □ のQ@

References o

Barricade-Cop Number

Definition

The Barricade-cop number of a graph, $c_B(G)$, is the minimum number of cops required to capture the robber.

Cops, Robbers, and Barricades

Characterization

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

References o

Barricade-Cop Number

Definition

The Barricade-cop number of a graph, $c_B(G)$, is the minimum number of cops required to capture the robber.

Theorem For any graph G, $c(G) \leq c_B(G)$.

Cops, Robbers, and Barricades

Characterization

▲ロ▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

References o

Results

Theorem For a path with *n* nodes, P_n , $c_B(P_n) = \lceil \frac{(n-2)}{7} \rceil$.

Cops, Robbers, and Barricades

Characterization

▲□▶▲□▶▲□▶▲□▶ □ のQ@

References o

Results

Theorem For a path with *n* nodes, P_n , $c_B(P_n) = \lfloor \frac{(n-2)}{7} \rfloor$.

Theorem

For any tree, T, let ℓ be the set of leaves of T, then $c_B(T) \ge |N_2(\ell)|$.

Cops, Robbers, and Barricades

Characterization

References o

Results

Theorem

A tree with a root, and having each branch of length 1 or 2, called a spider, is barricade-cop-win.

▲□▶▲圖▶▲≣▶▲≣▶ ■ のQ@

Cops, Robbers, and Barricades

Characterization

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

References o

Results

Theorem

A tree with a root, and having each branch of length 1 or 2, called a spider, is barricade-cop-win.

Theorem

The only trees that are barricade-cop-win are spiders.

Cops, Robbers, and Barricades

Characterization

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

References o

M-ary Trees

Definition

A tree is called *m*-ary if each vertex has at most *m* children.

A tree is said to be full *m*-ary, if every non-leaf has exactly *m* children.

The height of a tree, *h*, is the number of edges in a longest path from the root to any leaf.

Cops, Robbers, and Barricades

Characterization 000

▲□▶▲□▶▲□▶▲□▶ □ のQ@

References o

M-ary Trees

Theorem

For a full m-ary tree, T with height h, we let $c \leq \lfloor \frac{h-m-3}{2m+3} \rfloor$, then,

$$c_B(T) \leq \sum_{i=1}^{c} m^{i(2m+4)+m+1}$$

Cops, Robbers, and Barricades

Characterization

References

M-ary Trees

Theorem

For a full m-ary tree, T with height h, we let $c \leq \lfloor \frac{h-m-3}{2m+3} \rfloor$, then,

$$c_B(T) \leq \sum_{i=1}^{c} m^{i(2m+4)+m+1}$$

Place a row full of cops at height h - 2 (ie. the grandparents of the leaves), and then place full rows of cops at every 2m + 3 rows, until we are at height m + 1 or less. This is called the row strategy.

Cops, Robbers, and Barricades

Characterization

▲□▶▲□▶▲□▶▲□▶ □ のQ@

References o

M-ary Trees

Distance Strategey: Place each cop so that they are no closer than 4 vertices away from any other

Cops, Robbers, and Barricades

Characterization

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

References o

M-ary Trees

Distance Strategey: Place each cop so that they are no closer than 4 vertices away from any other

Theorem For any tree, T, $c_B(T) \leq \lceil \frac{n}{4} \rceil$.

Cops, Robbers, and Barricades

Characterization

References o

M-ary Trees

Distance Strategey: Place each cop so that they are no closer than 4 vertices away from any other

Theorem For any tree, T, $c_B(T) \leq \lceil \frac{n}{4} \rceil$.

Conjecture

For a tree, T,

$$c_B(T) = \max\left(\lceil \frac{n}{4} \rceil, \sum_{i=1}^{c} m^{i(2m+4)+m+1}
ight)$$

▲□▶ ▲圖▶ ▲画▶ ▲画▶ 三回 ●の≪で

Cops, Robbers, and Barricades

Characterization

▲□▶▲□▶▲□▶▲□▶ □ のQ@

References o

Diameter

Definition

The diameter of a graph *G*, is the maximum length shortest path between any two vertices, $x, y \in V(G)$.

Theorem

If G has diameter 2, $c_B(G) = c(G)$.

Cops, Robbers, and Barricades

Characterization

References o

Domination

Is this graph parameter similar to domination number?

Cops, Robbers, and Barricades

Characterization

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

References o

Domination

Is this graph parameter similar to domination number?

Cops, Robbers, and Barricades

Characterization

References o

Domination

Is this graph parameter similar to domination number?

m - size of each partition*d* - number of partitions

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Cops, Robbers, and Barricades

Characterization

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

References o

Domination

Is this graph parameter similar to domination number?

Cops, Robbers, and Barricades

Characterization

References o

Domination

Is this graph parameter similar to domination number?

m - size of each partition d - number of partitions $m \ge \lfloor \frac{d}{2} \rfloor$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

 $c_B(G) = 2$ but $\gamma(G) \rightarrow \infty$

Cops, Robbers, and Barricades

Characterization

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

References o

The Characterization

Definition (Some Notation)

- Barricade Set *B_k*: the set of vertices containing all barricades at round *k*
- Barricade Sequence: the sequence $\{B_1, B_2, ..., B_k\}$
- Barricade Graph G_k : the graph G with B_k removed
- *comp*(*R*): the component of *G_k* containing *R*

Cops, Robbers, and Barricades

Characterization

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

References o

The Characterization

Using the relation, \leq as defined in the Nowakowski, Winkler characterization.

Theorem

A graph G is barricade-cop-win if and only if given any sequence of B_k , there is some vertex $u \in N_{G_{k-1}}(C)$ with $u \in comp_{G_k}(R)$, such that $u \leq_{\omega} R$ for some finite ω .

Cops, Robbers, and Barricades

Characterization

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

References o

The Characterization

Using the relation, \leq as defined in the Nowakowski, Winkler characterization.

Theorem

A graph G is barricade-cop-win if and only if given any sequence of B_k , there is some vertex $u \in N_{G_{k-1}}(C)$ with $u \in comp_{G_k}(R)$, such that $u \leq_{\omega} R$ for some finite ω .

This gives us an algorithm for determining whether a graph is barricade cop win. Although it is not in poly-time like the Nowakowski Winkler algorithm. [6] [4] [5]

Cops, Robbers, and Barricades

Characterization

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

References o

Thank You

Cops, Robbers, and Barricades

Characterization

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

References

References

- M. Aigner, M. Fromme, A game of cops and robbers. *Discrete Applied Mathematics* 8 (1984) 1-11.
- A. Berarducci, B. Intrigilia, On the Cop Number of a Graph, *Advances in Applied Mathematics* **14** (1993) 398-403.
- A. Bonato, WHAT IS ... Cop Number? *Notices of the American Mathematical Society* **59** (2012) 1100-1101.
- A. Bonato, G. McGillivary, Characterizations and algorithms for generalized Cops and Robbers games *Contributions in Discrete Math* (accepted)
- B.Kinnersley, Cops and Robbers is EXPTIME-complete *ArXiv:* 1309.5405v2
- R.J. Nowakowski, P. Winkler, Vertex-to-vertex pursuit in a graph, *Discrete Mathematics* **43** (1983) 235-239.
- - A. Quilliot, Jeux et pointes fixes sur les graphes, *Thèse de 3ème cycle*,, Université de Paris VI, (1978).