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Complex Networks

Figure: The Web Graph
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Complex Networks

Five main properties:

ok~

Large-scale

Evolving over time

Power law degree distribution
Small world property
Densification

Conclusion
[e]e]
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Power Law Degree Distribution

Degree Distribution: {Nk g : 0 < k < n}
Nk.g = [{x € V(G) : degg(x) = K|
Power Law: for 1 < 8 € R, and interval of k € N

—Nk’G ~ k=",
n

Conclusion
[e]e]
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Small World Property

The average distance is

Zu veV(G d(U V)

(\V( I)

L(G) =

The clustering coefficient of G is defined as follows:

C(G)

Z Cx(G), where Cy(G)=
er(G) (

(

Conclusion
[e]e]

[E(GINa())|
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Densification

A sequence of graphs{G; : t € N} densifies over time if

im |ECGD)

e V(G|

Conclusion
[e]e]
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Preferential Attachment Model

Preferential Attachment Model (2002, Barabasi, Albert)

Input: Gop, me N

lterate:
Add a new node v, with m neighbours.
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Preferential Attachment Model

Preferential Attachment Model (2002, Barabasi, Albert)

Input: Gp, me N

lterate:

Add a new node v, with m neighbours.

Each neighbour u; is chosen independently using preferential
attachment, that is the edge u;v is added with probability

pi = deg(u;)
=
>_yev(a) deg(y))



Introduction Defining the Model Results Conclusion

000000 (o] 0000000000000 0 (e}
oe 00000
00000

Preferential Attachment Model

ACL Preferential Attachment Model (2008, Aiello, Chung, Lu)

Input: p € [0,1]

pi = deg(uj)
-
> uev(e) deg(y))

Vertex Step: add a new node v, and add the edge u;v with
probability p; as above
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Preferential Attachment Model

ACL Preferential Attachment Model (2008, Aiello, Chung, Lu)

Input: p € [0,1]

pi = deg(uj)
;=
> uev(e) deg(y))
Vertex Step: add a new node v, and add the edge u;v with
probability p; as above

Edge Step: add a new edge rs, where both nodes r, s are
chosen by preferential attachment
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Preferential Attachment Model

ACL Preferential Attachment Model (2008, Aiello, Chung, Lu)

Input: p € [0,1]

pi = deg(uj)
;=

> uev(e) deg(y))
Vertex Step: add a new node v, and add the edge u;v with
probability p; as above
Edge Step: add a new edge rs, where both nodes r, s are
chosen by preferential attachment

With probability p take a vertex step, and with probability 1 — p
take an edge step.
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Structural Balance Theory

Representing adversarial relationships with (—) and friendly
relationships with (+), Structural Balance Theory says triads
seek a positive product of edge signs, called closure.
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ILT

Iterated Local Transitivity Model (ILT) (2009, Bonato, Hadi,
Horn, Pratat, Wang)

Input: Gy

To form G at time ¢ clone each x € V(G;_1) by adding a new
node x’ such that

NG;(X/) = Nth [X]



Introduction Defining the Model Results Conclusion

000000 (e]e) 0000000000000 0 [e]e]
[e]e] 00000
00e00
Example of ILT
v/ u
v u v u

Figure: Example of one time step of ILT with Gy = K.
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Iterated Local Anti-Transitivity

Iterated Local Anti-Transitivity Model (ILAT) (2017, Bonato,
Infeld, Pokhrel, Pratat)

Input: Gy

To form G at time t anti-clone each x € V(G;_4) by adding new
node x* such that

Ng,(x*) = V(G¢-1)\Ng, ,[x]
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Example of ILAT

Figure: Example of one time step ILAT.

Conclusion
[e]e]
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ILM

Iterated Local Model (ILM) (2019+, Bonato, Chuangpishit,
English, Kay, M.)
Input: Go and S = {b;}cn, Where b; € {0,1}

To form ILM; s(Gp) at time t:
e if by =1 add a clone x’ for each x € V(G;_1) with
Ng,(x') = Ng,_,[x]
e if by = 0 add an anti-clone x* for each x € V(G;_1) with

Ne,(x*) = V(Gt-1)\Ng,_, [x]
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Example of ILM

V*

Figure: Example of ILM using Gy, = Kz and S = {1,0, ...}
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Size, Evolution, and Densification

Theorem (2019+, BCEKM) Given any graph, Gy, and any
binary sequence, S, with at least one zero, then at time step ¢

|E(ILM; 5(G))| = © <2f+5 <g>t_ﬁ> =0 (25 (g)t_ﬁ nt>

Where 7 is the first index such that s. = 0, and 3 is the largest
index such that sz = 0.
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Low Diameter

Theorem (2019+, BCEKM) Given G # K be a graph that is not
the disjoint union of two cliques, and a sequence with at least
two zeroes, then

diam(ILM; 5(G)) = 3
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Low Diameter

Lemma 2 < diam(G) = diam(LT(G)) and
2 < radius(G) =radius(LT(G)).

Proof For any u, v € V(G) with uv ¢ E(G)

distg(u, v) = dist;7(g)(u, v) and distg(u, v) = dist,r(g) (U, V')
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Low Diameter

Lemma 2 < diam(G) = diam(LT(G)) and

2 < radius(G) =radius(LT(G)).

Proof For any u, v € V(G) with uv ¢ E(G)

distg(u, v) = dist;7(g)(u, v) and distg(u, v) = dist,r(g) (U, V')

Similarly dist,7(g)(u, v') = distg(u, v)
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Low Diameter

Lemma 2 < diam(G) = diam(LT(G)) and

2 < radius(G) =radius(LT(G)).

Proof For any u, v € V(G) with uv ¢ E(G)

distg(u, v) = dist;7(g)(u, v) and distg(u, v) = dist,r(g) (U, V')
Similarly dist,7(g)(u, v') = distg(u, v)

When uv € E(G), dist () (v, V') = 2
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Low Diameter

Proof Sketch
¢ LAT(G) has radius at least 3 since dist(x, x*) > 3
e Lemma: If v(G) > 3 then diam(LAT(G)) <3

Conclusion
[e]e]
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Low Diameter

Proof Sketch
¢ LAT(G) has radius at least 3 since dist(x, x*) > 3
e Lemma: If v(G) > 3 then diam(LAT(G)) <3
¢ We only need to consider v(G) = 2

Conclusion
[e]e]

¢ Find x, y whose closed neighborhoods partition the vertex

set
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Low Diameter

Proof Sketch

LAT(G) has radius at least 3 since dist(x, x*) > 3
Lemma: If v(G) > 3 then diam(LAT(G)) < 3
We only need to consider v(G) = 2

Find x, y whose closed neighborhoods partition the vertex
set

Pairs of vertices in N|[x] or in N[y] are distance 2.
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Low Diameter

Proof Sketch

¢ LAT(G) has radius at least 3 since dist(x, x*) > 3
Lemma: If v(G) > 3 then diam(LAT(G)) < 3
We only need to consider v(G) = 2

Find x, y whose closed neighborhoods partition the vertex
set

Pairs of vertices in N|[x] or in N[y] are distance 2.
If u € N[x] has a neighbour in N[y]
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Low Diameter

Proof Sketch
¢ LAT(G) has radius at least 3 since dist(x, x*) > 3
e Lemma: If v(G) > 3 then diam(LAT(G)) <3
¢ We only need to consider v(G) = 2

¢ Find x, y whose closed neighborhoods partition the vertex
set

¢ Pairs of vertices in N[x] or in N[y] are distance 2.
e If u € N[x] has a neighbour in N[y]

e Otherwise, we get this picture using a counting argument
and case analysis
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Clustering

Theorem (2019+, BCEKM) Given a sequence with bounded
gaps between zeroes, and k a constant such that there are no
gaps of length k,

1

C(ILM; 5(G)) = (1 + O“))W'
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Clustering

Theorem (2019+, BCEKM) Given a sequence with bounded
gaps between zeroes, and k a constant such that there are no
gaps of length k,

1

C(ILM; 5(G)) = (1 + O(U)m-

The clustering coefficient is bounded away from zero.
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Clustering

Let 84y and B be the two most recent 0 steps

Conclusion
[e]e]
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Clustering

Let 84y and B be the two most recent 0 steps

If v is not a clone in Gg,, then degg (v) = "% — 1, and then

g1

degg,  1(v) = 2degs, (v) +1 = 5
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Clustering

Let 84y and B be the two most recent 0 steps

If v is not a clone in Gg,, then degg (v) = % — 1, and then

_ _ Ny
degg,  1(v) = 2degs, (v) +1 = 1T —1.

Since all entries between 1 an o are 1, we have, inductively

that n
-1
deg52_1(V) == B; - 1
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Clustering

Define two sets:

Xg, = N, (v) N (V(Gg,) \ V(Gg, 1))
Ys, = (V(Gg,) \ V(Gs,1)) \ Ny (V)

With |Xﬁ2’ = |Yﬁ2’ = n52/4-

Conclusion
[e]e]
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Clustering

Define two sets:

Xg, = N, (v) N (V(Gg,) \ V(Gg, 1))
Ys, = (V(Gg,) \ V(Gs,1)) \ Ny (V)

With |Xﬁ2’ = |Yﬁ2’ = n52/4-

For transitive steps, create X3, 1 and Y3, 1 by adding the set
of all respective clones to each set

Note X, 1 € N32+1(V) and Yg, 1N N52+1(V) =0
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Clustering

After an anti-transitive step, each vertex in X;_1 will be adjacent
to each clone of vertices in Y;_1.
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Clustering

After an anti-transitive step, each vertex in X;_1 will be adjacent
to each clone of vertices in Y;_1.

Thus, Ni(v) contains at least | X;_+| - | Y;_1| = n?/64 edges.

Since deg;(v) = 3 — 1, we have that

n? /64

| =

ci(v) = = (1+0(1))
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Clustering

Note this is holds for all vertices v € V(Gg,_1).

There are ng, _1 > Ni_ok_1 = zrr Such vertices,

1 Ny
(1 +0(1)3 - 53r7 1
C(Gr) > P2 = (14 o) g
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Spectral Gap

A the adjacency matrix and D the diagonal degree matrix of a
graph G. The normalized Laplacian of G is

L=1-D"12AD1/2,

With eigenvalues 0 = A\g < Ay <+ - < Ap_1 <2
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Spectral Gap

A the adjacency matrix and D the diagonal degree matrix of a
graph G. The normalized Laplacian of G is

L=1-D"12AD1/2,

With eigenvalues 0 = A\g < Ay <+ - < Ap_1 <2

The spectral gap of the normalized Laplacian is defined as

A= max{\)q — 1’, ’An_1 — 1’}
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Spectral Gap

Expander Mixing Lemma

If G is a graph with spectral gap A, then, for all sets X C V(G),

(vol(X))? < vol(X)vol(X)

eX.X) =@ | = val@)

Where vol(X) = ), x degv for X € V(G).
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Spectral Gap

After a transitive step, let X = V(G;) \ V(G;i_1)

Since X is an independent set, e(X, X) = 0. We derive that
vol(G;) = 6er_1 + 2n;_1

vol(X) =2et_1 + N4

vol(X) = vol(Gt) — vol(X) = 4e;_1 + N4
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Spectral Gap
After a transitive step, let X = V(G;) \ V(G;i_1)
Since X is an independent set, e(X, X) = 0. We derive that
vol(G;) = 6er_1 + 2n;_1
vol(X) =2et_1 + N4
vol(X) = vol(Gt) — vol(X) = 4e;_1 + ny_4

(vol(X))? - vol(Gy)

M2 6l(G) Vol (X)vol(X)
~ vol(X)
vol(X)
2611+ Nty

>1/2
4er 1+ Nt /
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Spectral Gap

After an antltransmve step, Let X = V(Gt)\V(Gt-1)
VOl(Gt) 2nt 1~ 2611 — 2N;_4

vol(X) =n? | —2er 1 — M4
vol(X) = vol(G;) — vol(X) = n? , — n_4.

A > OIX)
vol(X)
iy — 2611 — Nty
M4 = Nt
26;_1 1
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Spectral Gap

Therefore, we have that

2611 < 2(nt2_1) - 2(”1—21 /2> = g”?q - 1”1—17
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Induced Subgraphs

Theorem (2019+, BCEKM) If F is a graph, then there exists
some constant fy = fy(F) such that for all t > ty, all graphs G,
and all binary sequences S, F is an induced subgraph of
ILM; s(G).
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Finite Subgraphs

Proof (sketch):
Show /LT, (Kj) contains induced copy of F

Conclusion
[e]e]
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Finite Subgraphs

Proof (sketch):
Show /LT, (Kj) contains induced copy of F

e Find a t with a clique of size |V(F)|

Conclusion
[e]e]
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Finite Subgraphs

Proof (sketch):
Show /LT, (Kj) contains induced copy of F

e Find a t with a clique of size |V(F)|
e |teratively delete edges of the clique to form F

Conclusion
[e]e]



Introduction Defining the Model Results

000000 (o] 0000000000000 0
(e]e} 0@000
00000

Finite Subgraphs

Proof (sketch):
Show /LT, (Kj) contains induced copy of F

e Find a t with a clique of size |V(F)|
e |teratively delete edges of the clique to form F
e For each uv ¢ E(F) replace with v'v’

Conclusion
[e]e]
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Finite Subgraphs

Proof (sketch):
Show /LT, (Kj) contains induced copy of F

e Find a t with a clique of size |V(F)|
e |teratively delete edges of the clique to form F
e For each uv ¢ E(F) replace with v'v’

Show ILM,, s(G) contains ILT,(Kj), by induction.

Conclusion
oo

e One transitive step will increase the r for the induced copy

of ILT
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Finite Subgraphs

Proof (sketch):
Show /LT, (Kj) contains induced copy of F

e Find a t with a clique of size |V(F)|
e |teratively delete edges of the clique to form F
e For each uv ¢ E(F) replace with v'v’

Show ILM,, s(G) contains ILT,(Kj), by induction.

Conclusion
oo

e One transitive step will increase the r for the induced copy

of ILT

¢ Two anti-transitive steps will similarily increase the induced

copy of ILT



Introduction Defining the Model Results

000000 (o] 0000000000000 0
(e]e} 0@000

00000

Finite Subgraphs

Proof (sketch):
Show /LT, (Kj) contains induced copy of F

e Find a t with a clique of size |V(F)|
e |teratively delete edges of the clique to form F
e For each uv ¢ E(F) replace with v'v’

Show ILM,, s(G) contains ILT,(Kj), by induction.

Conclusion
oo

e One transitive step will increase the r for the induced copy

of ILT

¢ Two anti-transitive steps will similarily increase the induced

copy of ILT

¢ |n any binary sequence of length 2r there exist r Os or r 1s.
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Hamiltonicity

Theorem For G # Ky and S a binary sequence with at least two
non-consecutive zeros, then ILM; 5(G) = G; is Hamiltonian.
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Hamiltonicity

Theorem For G # Ky and S a binary sequence with at least two
non-consecutive zeros, then ILM; 5(G) = G; is Hamiltonian.

Definition Let ¢(G) be the first value such that ILT(g) is

Hamiltonian, and let ¢, be the maximum over all graphs of order
n.
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Hamiltonicity

Theorem For G # Ky and S a binary sequence with at least two
non-consecutive zeros, then ILM; 5(G) = G; is Hamiltonian.

Definition Let ¢(G) be the first value such that ILT(g) is

Hamiltonian, and let ¢, be the maximum over all graphs of order
n.

Theorem Forall n > 3

logo(n—1) < (p < [loga(n—1)] + 1
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Hamiltonicity

Proof (sketch):

e Using A(G;) = 2 — 1, the compliment of G; is Hamiltonian
by Dirac’s theorem
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Hamiltonicity

Proof (sketch):

e Using A(G;) = 2 — 1, the compliment of G; is Hamiltonian
by Dirac’s theorem

e Four clone vertices form a clique in the HC of G;
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Hamiltonicity

Proof (sketch):

e Using A(G;) = 2 — 1, the compliment of G; is Hamiltonian
by Dirac’s theorem

e Four clone vertices form a clique in the HC of G;

¢ Find two cycles that partition the vertex set and perform an
edge switch
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Other Structural Properties

For the model with certain restrictions on the input sequence
and graph:

* X(G)+t—1<x(ILM;s(G)) < x(G) +

* 1(ILM;5(G)) < 3
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Future Directions

Graph Limits

Domination number in remaining cases
Randomization of the model

Improve Clustering, still unknown for ILAT
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