The Iterated Local Model for Social Networks

Erin Meger

Mount Allison University Joint work with: Anthony Bonato, Huda Chuangpishit, Sean English, and Bill Kay

Combinatorics Seminar UQAM 17 April 2020

Outline

Introduction

Complex Networks Probabilistic Models Deterministic Models

Defining the Model Iterated Local Model

Results

Complex Network Properties Structural Properties

Conclusion

Complex Networks



Figure: The Web Graph

Five main properties:

- Large-scale
- 2. Evolving over time
- 3. Power law degree distribution
- 4. Small world property
- Densification

Power Law Degree Distribution

Degree Distribution: $\{N_{k,G}: 0 \le k \le n\}$

$$N_{k,G} = |\{x \in V(G) : \deg_G(x) = k|\}$$

Power Law: for $1 < \beta \in \mathbb{R}$, and interval of $k \in \mathbb{N}$

$$\frac{N_{k,G}}{n} \approx k^{-\beta}$$
.

Small World Property

The average distance is

$$L(G) = \frac{\sum_{u,v \in V(G)} d(u,v)}{\binom{|V(G)|}{2}}$$

The clustering coefficient of *G* is defined as follows:

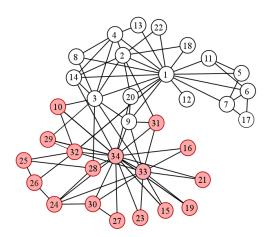
$$C(G) = \frac{1}{|V(G)|} \sum_{x \in V(G)} C_x(G), \quad \text{where} \quad C_x(G) = \frac{\left|E\left(G[N_G(x)]\right)\right|}{\binom{\deg(x)}{2}}.$$

Densification

A sequence of graphs $\{G_t : t \in \mathbb{N}\}$ densifies over time if

$$\lim_{t\to\infty}\frac{|E(G_t)|}{|V(G_t)|}\to\infty$$

Zachary Karate Club



Preferential Attachment Model (2002, Barabasi, Albert)

Input: G_0 , $m \in \mathbb{N}$

Iterate:

Add a new node v, with m neighbours.

Preferential Attachment Model (2002, Barabasi, Albert)

Input: G_0 , $m \in \mathbb{N}$

Iterate:

Add a new node v, with m neighbours.

Each neighbour u_i is chosen independently using *preferential* attachment, that is the edge $u_i v$ is added with probability

$$p_i = \frac{\deg(u_i)}{\sum_{u_i \in V(G)} \deg(u_j)}$$

ACL Preferential Attachment Model (2008, Aiello, Chung, Lu)

Input: $p \in [0, 1]$

$$p_i = \frac{\deg(u_i)}{\sum_{u_j \in V(G)} \deg(u_j)}$$

Vertex Step: add a new node v, and add the edge $u_i v$ with probability p_i as above

ACL Preferential Attachment Model (2008, Aiello, Chung, Lu)

Input: $p \in [0, 1]$

$$p_i = \frac{\deg(u_i)}{\sum_{u_j \in V(G)} \deg(u_j)}$$

Vertex Step: add a new node v, and add the edge $u_i v$ with probability p_i as above

Edge Step: add a new edge rs, where both nodes r, s are chosen by preferential attachment

ACL Preferential Attachment Model (2008, Aiello, Chung, Lu)

Input: $p \in [0, 1]$

$$p_i = \frac{\deg(u_i)}{\sum_{u_j \in V(G)} \deg(u_j)}$$

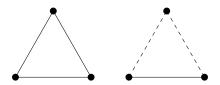
Vertex Step: add a new node v, and add the edge $u_i v$ with probability p_i as above

Edge Step: add a new edge rs, where both nodes r, s are chosen by preferential attachment

With probability p take a vertex step, and with probability 1 - p take an edge step.

Structural Balance Theory

Representing adversarial relationships with (-) and friendly relationships with (+), Structural Balance Theory says triads seek a positive product of edge signs, called closure.



00000

ILT

Iterated Local Transitivity Model (ILT) (2009, Bonato, Hadi, Horn, Prałat, Wang)

Input: G₀

To form G_t at time t clone each $x \in V(G_{t-1})$ by adding a new node x' such that

$$N_{G_t}(x') = N_{G_{t-1}}[x]$$

Example of ILT

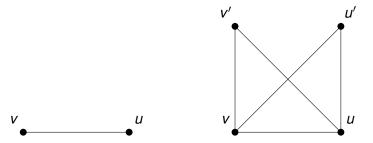


Figure: Example of one time step of ILT with $G_0 = K_2$.

Iterated Local Anti-Transitivity

Iterated Local Anti-Transitivity Model (ILAT) (2017, Bonato, Infeld, Pokhrel, Prałat)

Input: G₀

To form G_t at time t anti-clone each $x \in V(G_{t-1})$ by adding new node x^* such that

$$N_{G_t}(x^*) = V(G_{t-1}) \setminus N_{G_{t-1}}[x]$$

Example of ILAT

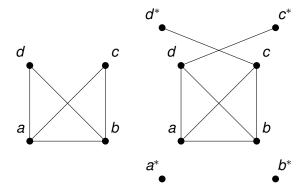


Figure: Example of one time step ILAT.

ILM

Iterated Local Model (ILM) (2019+, Bonato, Chuangpishit, English, Kay, M.)

Input: G_0 and $S = \{b_i\}_{i \in \mathbb{N}}$, where $b_i \in \{0, 1\}$

To form $ILM_{t,S}(G_0)$ at time t:

• if $b_t = 1$ add a clone x' for each $x \in V(G_{t-1})$ with

$$N_{G_t}(x') = N_{G_{t-1}}[x]$$

• if $b_t = 0$ add an anti-clone x^* for each $x \in V(G_{t-1})$ with

$$N_{G_t}(x^*) = V(G_{t-1}) \setminus N_{G_{t-1}}[x]$$

Example of ILM

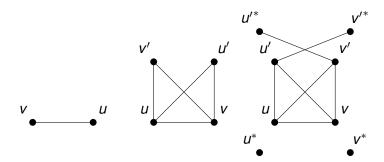


Figure: Example of ILM using $G_0 = K_2$ and $S = \{1, 0, ...\}$

Size, Evolution, and Densification

Theorem (2019+, BCEKM) Given any graph, G_0 , and any binary sequence, S, with at least one zero, then at time step t

$$|E(\mathsf{ILM}_{t,S}(G))| = \Theta\left(2^{t+\beta}\left(\frac{3}{2}\right)^{t-\beta}\right) = \Theta\left(2^{\beta}\left(\frac{3}{2}\right)^{t-\beta}n_t\right)$$

Where τ is the first index such that $s_{\tau} = 0$, and β is the largest index such that $s_{\beta} = 0$.

Theorem (2019+, BCEKM) Given $G \neq K_1$ be a graph that is not the disjoint union of two cliques, and a sequence with at least two zeroes, then

$$diam(ILM_{t,S}(G)) = 3$$

Lemma
$$2 \le \text{diam}(G) = \text{diam}(LT(G))$$
 and $2 \le \text{radius}(G) = \text{radius}(LT(G))$.

Proof For any
$$u, v \in V(G)$$
 with $uv \notin E(G)$

$$\operatorname{dist}_G(u,v) = \operatorname{dist}_{LT(G)}(u,v)$$
 and $\operatorname{dist}_G(u,v) = \operatorname{dist}_{LT(G)}(u',v')$

Lemma
$$2 \le \text{diam}(G) = \text{diam}(LT(G))$$
 and $2 \le \text{radius}(G) = \text{radius}(LT(G))$.

Proof For any
$$u, v \in V(G)$$
 with $uv \notin E(G)$
 $\operatorname{dist}_G(u, v) = \operatorname{dist}_{LT(G)}(u, v)$ and $\operatorname{dist}_G(u, v) = \operatorname{dist}_{LT(G)}(u', v')$
Similarly $\operatorname{dist}_{LT(G)}(u, v') = \operatorname{dist}_G(u, v)$

Lemma
$$2 \le \text{diam}(G) = \text{diam}(LT(G))$$
 and $2 \le \text{radius}(G) = \text{radius}(LT(G))$.

Proof For any
$$u, v \in V(G)$$
 with $uv \notin E(G)$

$$\operatorname{dist}_G(u,v) = \operatorname{dist}_{LT(G)}(u,v)$$
 and $\operatorname{dist}_G(u,v) = \operatorname{dist}_{LT(G)}(u',v')$

Similarly
$$dist_{LT(G)}(u, v') = dist_G(u, v)$$

When
$$uv \in E(G)$$
, $dist_{LT(G)}(u', v') = 2$

- LAT(G) has radius at least 3 since dist $(x, x^*) \ge 3$
- Lemma: If $\gamma(G) \ge 3$ then diam(LAT(G)) ≤ 3

- LAT(G) has radius at least 3 since dist $(x, x^*) \ge 3$
- Lemma: If $\gamma(G) \geq 3$ then diam(LAT(G)) ≤ 3
- We only need to consider $\gamma(G) = 2$
- Find x, y whose closed neighborhoods partition the vertex set

- LAT(G) has radius at least 3 since dist(x, x*) ≥ 3
- Lemma: If $\gamma(G) \ge 3$ then diam(LAT(G)) ≤ 3
- We only need to consider $\gamma(G) = 2$
- Find x, y whose closed neighborhoods partition the vertex set
- Pairs of vertices in N[x] or in N[y] are distance 2.

- LAT(G) has radius at least 3 since dist(x, x*) ≥ 3
- Lemma: If $\gamma(G) \geq 3$ then diam(LAT(G)) ≤ 3
- We only need to consider γ(G) = 2
- Find x, y whose closed neighborhoods partition the vertex set
- Pairs of vertices in N[x] or in N[y] are distance 2.
- If $u \in N[x]$ has a neighbour in N[y]

- LAT(G) has radius at least 3 since dist $(x, x^*) \ge 3$
- Lemma: If $\gamma(G) \ge 3$ then diam(LAT(G)) ≤ 3
- We only need to consider γ(G) = 2
- Find x, y whose closed neighborhoods partition the vertex set
- Pairs of vertices in N[x] or in N[y] are distance 2.
- If $u \in N[x]$ has a neighbour in N[y]
- Otherwise, we get this picture using a counting argument and case analysis

Theorem (2019+, BCEKM) Given a sequence with bounded gaps between zeroes, and k a constant such that there are no gaps of length k,

$$C(\mathsf{ILM}_{t,S}(G)) \geq (1+o(1))\frac{1}{2^{2k+4}}.$$

Theorem (2019+, BCEKM) Given a sequence with bounded gaps between zeroes, and k a constant such that there are no gaps of length k,

$$C(\mathsf{ILM}_{t,S}(G)) \geq (1+o(1))\frac{1}{2^{2k+4}}.$$

The clustering coefficient is bounded away from zero.

Let β_1 and β_2 be the two most recent 0 steps

Let β_1 and β_2 be the two most recent 0 steps

If ν is not a clone in G_{β_1} , then $\deg_{\beta_1}(\nu) = \frac{n_{\beta_1}}{2} - 1$, and then

$$\deg_{\beta_1+1}(v)=2\deg_{\beta_1}(v)+1=\frac{n_{\beta_1+1}}{2}-1.$$

Let β_1 and β_2 be the two most recent 0 steps

If v is not a clone in G_{β_1} , then $\deg_{\beta_1}(v) = \frac{n_{\beta_1}}{2} - 1$, and then

$$\deg_{\beta_1+1}(v) = 2\deg_{\beta_1}(v) + 1 = \frac{n_{\beta_1+1}}{2} - 1.$$

Since all entries between β_1 an β_2 are 1, we have, inductively that

$$\deg_{\beta_2-1}(v) = \frac{n_{\beta_2-1}}{2} - 1.$$

Define two sets:

$$X_{\beta_2} = N_{\beta_2}(v) \cap (V(G_{\beta_2}) \setminus V(G_{\beta_2-1}))$$

$$Y_{\beta_2} = (V(G_{\beta_2}) \setminus V(G_{\beta_2-1})) \setminus N_{\beta_2}(v)$$

With
$$|X_{\beta_2}| = |Y_{\beta_2}| = n_{\beta_2}/4$$
.

Define two sets:

$$X_{\beta_2} = N_{\beta_2}(v) \cap (V(G_{\beta_2}) \setminus V(G_{\beta_2-1}))$$

$$Y_{\beta_2} = (V(G_{\beta_2}) \setminus V(G_{\beta_2-1})) \setminus N_{\beta_2}(v)$$

With
$$|X_{\beta_2}| = |Y_{\beta_2}| = n_{\beta_2}/4$$
.

For transitive steps, create X_{β_2+1} and Y_{β_2+1} by adding the set of all respective clones to each set

Note
$$X_{\beta_2+1} \subseteq N_{\beta_2+1}(v)$$
 and $Y_{\beta_2+1} \cap N_{\beta_2+1}(v) = \emptyset$

After an anti-transitive step, each vertex in X_{t-1} will be adjacent to each clone of vertices in Y_{t-1} .

After an anti-transitive step, each vertex in X_{t-1} will be adjacent to each clone of vertices in Y_{t-1} .

Thus, $N_t(v)$ contains at least $|X_{t-1}| \cdot |Y_{t-1}| = n_t^2/64$ edges.

Since $\deg_t(v) = \frac{n_t}{2} - 1$, we have that

$$c_t(v) \geq \frac{n_t^2/64}{\binom{n_t/2-1}{2}} = (1+o(1))\frac{1}{8}.$$

Note this is holds for all vertices $v \in V(G_{\beta_1-1})$.

There are $n_{\beta_1-1} \geq n_{t-2k-1} = \frac{n_t}{2^{2k+1}}$ such vertices,

$$C(G_t) \geq \frac{(1+o(1))\frac{1}{8} \cdot \frac{n_t}{2^{2k+1}}}{n_t} = (1+o(1))\frac{1}{2^{2k+4}},$$

A the adjacency matrix and D the diagonal degree matrix of a graph G. The normalized Laplacian of G is

$$\mathcal{L} = I - D^{-1/2}AD^{-1/2}.$$

With eigenvalues
$$0 = \lambda_0 \le \lambda_1 \le \cdots \le \lambda_{n-1} \le 2$$

A the adjacency matrix and D the diagonal degree matrix of a graph G. The normalized Laplacian of G is

$$\mathcal{L} = I - D^{-1/2}AD^{-1/2}.$$

With eigenvalues $0 = \lambda_0 \le \lambda_1 \le \cdots \le \lambda_{n-1} \le 2$

The spectral gap of the normalized Laplacian is defined as

$$\lambda = \max\{|\lambda_1 - 1|, |\lambda_{n-1} - 1|\}.$$

Expander Mixing Lemma

If G is a graph with spectral gap λ , then, for all sets $X \subseteq V(G)$,

$$\left| e(X,X) - \frac{(\operatorname{vol}(X))^2}{\operatorname{vol}(G)} \right| \le \lambda \frac{\operatorname{vol}(X)\operatorname{vol}(\overline{X})}{\operatorname{vol}(G)}.$$

Where $vol(X) = \sum_{v \in X} \deg v$ for $X \subseteq V(G)$.

After a transitive step, let $X = V(G_t) \setminus V(G_{t-1})$

Since X is an independent set, e(X, X) = 0. We derive that

$$vol(G_t) = 6e_{t-1} + 2n_{t-1}$$

$$vol(X) = 2e_{t-1} + n_{t-1}$$

$$\operatorname{vol}(\overline{X}) = \operatorname{vol}(G_t) - \operatorname{vol}(X) = 4e_{t-1} + n_{t-1}$$

After a transitive step, let $X = V(G_t) \setminus V(G_{t-1})$

Since X is an independent set, e(X, X) = 0. We derive that

$$vol(G_t) = 6e_{t-1} + 2n_{t-1}$$

 $vol(X) = 2e_{t-1} + n_{t-1}$
 $vol(\overline{X}) = vol(G_t) - vol(X) = 4e_{t-1} + n_{t-1}$

$$\lambda_t \ge \frac{(\operatorname{vol}(X))^2}{\operatorname{vol}(G_t)} \cdot \frac{\operatorname{vol}(G_t)}{\operatorname{vol}(X)\operatorname{vol}(\overline{X})}$$

$$= \frac{\operatorname{vol}(X)}{\operatorname{vol}(\overline{X})}$$

$$= \frac{2e_{t-1} + n_{t-1}}{4e_{t-1} + n_{t-1}} > 1/2$$

After an antitransitive step, Let
$$X = V(G_t) \setminus V(G_{t-1})$$
 vol $(G_t) = 2n_{t-1}^2 - 2e_{t-1} - 2n_{t-1}$ vol $(X) = n_{t-1}^2 - 2e_{t-1} - n_{t-1}$ vol $(\overline{X}) = \text{vol}(G_t) - \text{vol}(X) = n_{t-1}^2 - n_{t-1}$.
$$\lambda_t \ge \frac{\text{vol}(X)}{\text{vol}(\overline{X})}$$

$$= \frac{n_{t-1}^2 - 2e_{t-1} - n_{t-1}}{n_{t-1}^2 - n_{t-1}}$$

$$= 1 - \frac{2e_{t-1}}{n_{t-1}^2 - n_{t-1}} = \frac{1}{4} - o(1)$$

Therefore, we have that

$$2e_{t-1} \leq 2\binom{n_{t-1}}{2} - 2\binom{n_{t-1}/2}{2} = \frac{3}{4}n_{t-1}^2 - \frac{1}{2}n_{t-1},$$

Theorem (2019+, BCEKM) If F is a graph, then there exists some constant $t_0 = t_0(F)$ such that for all $t \ge t_0$, all graphs G, and all binary sequences S, F is an induced subgraph of $ILM_{t,S}(G)$.

Show $ILT_k(K_1)$ contains induced copy of F

Show $ILT_k(K_1)$ contains induced copy of F

• Find a t with a clique of size |V(F)|

Show $ILT_k(K_1)$ contains induced copy of F

- Find a t with a clique of size |V(F)|
- Iteratively delete edges of the clique to form F

Show $ILT_k(K_1)$ contains induced copy of F

- Find a t with a clique of size |V(F)|
- Iteratively delete edges of the clique to form F
- For each $uv \notin E(F)$ replace with u'v'

Show $ILT_k(K_1)$ contains induced copy of F

- Find a t with a clique of size |V(F)|
- Iteratively delete edges of the clique to form F
- For each $uv \notin E(F)$ replace with u'v'

Show $ILM_{2r,S}(G)$ contains $ILT_r(K_1)$, by induction.

 One transitive step will increase the r for the induced copy of ILT

Finite Subgraphs

Proof (sketch):

Show $ILT_k(K_1)$ contains induced copy of F

- Find a t with a clique of size |V(F)|
- Iteratively delete edges of the clique to form F
- For each uv ∉ E(F) replace with u'v'

Show $ILM_{2r,S}(G)$ contains $ILT_r(K_1)$, by induction.

- One transitive step will increase the r for the induced copy of ILT
- Two anti-transitive steps will similarly increase the induced copy of ILT

Show $ILT_k(K_1)$ contains induced copy of F

- Find a t with a clique of size |V(F)|
- Iteratively delete edges of the clique to form F
- For each uv ∉ E(F) replace with u'v'

Show $ILM_{2r,S}(G)$ contains $ILT_r(K_1)$, by induction.

- One transitive step will increase the r for the induced copy of ILT
- Two anti-transitive steps will similarly increase the induced copy of ILT
- In any binary sequence of length 2r there exist r 0s or r 1s.

Theorem For $G \neq K_1$ and S a binary sequence with at least two non-consecutive zeros, then $ILM_{t,S}(G) = G_t$ is Hamiltonian.

Hamiltonicity

Theorem For $G \neq K_1$ and S a binary sequence with at least two non-consecutive zeros, then $ILM_{t,S}(G) = G_t$ is Hamiltonian.

Definition Let $\zeta(G)$ be the first value such that $ILT_{\zeta(G)}$ is Hamiltonian, and let ζ_n be the maximum over all graphs of order n.

Hamiltonicity

Theorem For $G \neq K_1$ and S a binary sequence with at least two non-consecutive zeros, then $ILM_{t,S}(G) = G_t$ is Hamiltonian.

Definition Let $\zeta(G)$ be the first value such that $ILT_{\zeta(G)}$ is Hamiltonian, and let ζ_n be the maximum over all graphs of order n.

Theorem For all $n \ge 3$

$$\log_2(n-1) \le \zeta_n \le \lceil \log_2(n-1) \rceil + 1$$

• Using $\Delta(G_t) = \frac{n_t}{2} - 1$, the compliment of G_t is Hamiltonian by Dirac's theorem

Hamiltonicity

Proof (sketch):

- Using $\Delta(G_t) = \frac{n_t}{2} 1$, the compliment of G_t is Hamiltonian by Dirac's theorem
- Four clone vertices form a clique in the HC of $\overline{G_t}$

Hamiltonicity

Proof (sketch):

- Using $\Delta(G_t) = \frac{n_t}{2} 1$, the compliment of G_t is Hamiltonian by Dirac's theorem
- Four clone vertices form a clique in the HC of $\overline{G_t}$
- Find two cycles that partition the vertex set and perform an edge switch

Other Structural Properties

For the model with certain restrictions on the input sequence and graph:

•
$$\chi(G) + t - 1 \le \chi\left(\mathsf{ILM}_{t,S}(G)\right) \le \chi(G) + t$$

•
$$\gamma(\mathsf{ILM}_{t,S}(G)) \leq 3$$

Future Directions

- Graph Limits
- Domination number in remaining cases
- Randomization of the model
- Improve Clustering, still unknown for ILAT

Thank You