The Iterated Local Model for Social Networks

Erin Meger

Mount Allison University
Joint work with: Anthony Bonato, Huda Chuangpishit, Sean English, and Bill Kay
Combinatorics Seminar
UQAM 17 April 2020

Outline

Introduction
Complex Networks
Probabilistic Models
Deterministic Models
Defining the Model
Iterated Local Model
Results
Complex Network Properties
Structural Properties
Conclusion

Complex Networks

Figure: The Web Graph

Complex Networks

Five main properties:

1. Large-scale
2. Evolving over time
3. Power law degree distribution
4. Small world property
5. Densification

Power Law Degree Distribution

Degree Distribution: $\left\{N_{k, G}: 0 \leq k \leq n\right\}$

$$
N_{k, G}=\mid\left\{x \in V(G): \operatorname{deg}_{G}(x)=k \mid\right.
$$

Power Law: for $1<\beta \in \mathbb{R}$, and interval of $k \in \mathbb{N}$

$$
\frac{N_{k, G}}{n} \approx k^{-\beta}
$$

Small World Property

The average distance is

$$
L(G)=\frac{\sum_{u, v \in V(G)} d(u, v)}{\binom{|G(G)|}{2}}
$$

The clustering coefficient of G is defined as follows:

$$
C(G)=\frac{1}{|V(G)|} \sum_{x \in V(G)} C_{x}(G), \quad \text { where } \quad C_{x}(G)=\frac{\left|E\left(G\left[N_{G}(x)\right]\right)\right|}{\left(\operatorname{deg}_{2}(x)\right.} .
$$

Densification

A sequence of graphs $\left\{G_{t}: t \in \mathbb{N}\right\}$ densifies over time if

$$
\lim _{t \rightarrow \infty} \frac{\left|E\left(G_{t}\right)\right|}{\left|V\left(G_{t}\right)\right|} \rightarrow \infty
$$

Zachary Karate Club

Preferential Attachment Model

Preferential Attachment Model (2002, Barabasi, Albert)

Input: $G_{0}, m \in \mathbb{N}$
Iterate:
Add a new node v, with m neighbours.

Preferential Attachment Model

Preferential Attachment Model (2002, Barabasi, Albert)

Input: $G_{0}, m \in \mathbb{N}$
Iterate:
Add a new node v, with m neighbours.
Each neighbour u_{i} is chosen independently using preferential attachment, that is the edge $u_{i} v$ is added with probability

$$
p_{i}=\frac{\operatorname{deg}\left(u_{i}\right)}{\sum_{u_{j} \in V(G)} \operatorname{deg}\left(u_{j}\right)}
$$

Preferential Attachment Model

ACL Preferential Attachment Model (2008, Aiello, Chung, Lu)

Input: $p \in[0,1]$

$$
p_{i}=\frac{\operatorname{deg}\left(u_{i}\right)}{\sum_{u_{j} \in V(G)} \operatorname{deg}\left(u_{j}\right)}
$$

Vertex Step: add a new node v, and add the edge $u_{i} v$ with probability p_{i} as above

Preferential Attachment Model

ACL Preferential Attachment Model (2008, Aiello, Chung, Lu)

Input: $p \in[0,1]$

$$
p_{i}=\frac{\operatorname{deg}\left(u_{i}\right)}{\sum_{u_{j} \in V(G)} \operatorname{deg}\left(u_{j}\right)}
$$

Vertex Step: add a new node v, and add the edge $u_{i} v$ with probability p_{i} as above
Edge Step: add a new edge $r s$, where both nodes r, s are chosen by preferential attachment

Preferential Attachment Model

ACL Preferential Attachment Model (2008, Aiello, Chung, Lu)

Input: $p \in[0,1]$

$$
p_{i}=\frac{\operatorname{deg}\left(u_{i}\right)}{\sum_{u_{j} \in V(G)} \operatorname{deg}\left(u_{j}\right)}
$$

Vertex Step: add a new node v, and add the edge $u_{i} v$ with probability p_{i} as above
Edge Step: add a new edge $r s$, where both nodes r, s are chosen by preferential attachment
With probability p take a vertex step, and with probability $1-p$ take an edge step.

Structural Balance Theory

Representing adversarial relationships with (-) and friendly relationships with (+), Structural Balance Theory says triads seek a positive product of edge signs, called closure.

ILT

Iterated Local Transitivity Model (ILT) (2009, Bonato, Hadi, Horn, Prałat, Wang)

Input: G_{0}
To form G_{t} at time t clone each $x \in V\left(G_{t-1}\right)$ by adding a new node x^{\prime} such that

$$
N_{G_{t}}\left(x^{\prime}\right)=N_{G_{t-1}}[x]
$$

Example of ILT

Figure: Example of one time step of ILT with $G_{0}=K_{2}$.

Iterated Local Anti-Transitivity

Iterated Local Anti-Transitivity Model (ILAT) (2017, Bonato, Infeld, Pokhrel, Prałat)

Input: G_{0}
To form G_{t} at time t anti-clone each $x \in V\left(G_{t-1}\right)$ by adding new node x^{*} such that

$$
N_{G_{t}}\left(x^{*}\right)=V\left(G_{t-1}\right) \backslash N_{G_{t-1}}[x]
$$

Example of ILAT

Figure: Example of one time step ILAT.

ILM

Iterated Local Model (ILM) (2019+, Bonato, Chuangpishit,
English, Kay, M.)
Input: G_{0} and $S=\left\{b_{i}\right\}_{i \in \mathbb{N}}$, where $b_{i} \in\{0,1\}$
To form $\operatorname{ILM}_{t, S}\left(G_{0}\right)$ at time t :

- if $b_{t}=1$ add a clone x^{\prime} for each $x \in V\left(G_{t-1}\right)$ with

$$
N_{G_{t}}\left(x^{\prime}\right)=N_{G_{t-1}}[x]
$$

- if $b_{t}=0$ add an anti-clone x^{*} for each $x \in V\left(G_{t-1}\right)$ with

$$
N_{G_{t}}\left(x^{*}\right)=V\left(G_{t-1}\right) \backslash N_{G_{t-1}}[x]
$$

Example of ILM

Figure: Example of ILM using $G_{0}=K_{2}$ and $S=\{1,0, \ldots\}$

Size, Evolution, and Densification

Theorem (2019+, BCEKM) Given any graph, G_{0}, and any binary sequence, S, with at least one zero, then at time step t

$$
\left|E\left(\operatorname{ILM}_{t, S}(G)\right)\right|=\Theta\left(2^{t+\beta}\left(\frac{3}{2}\right)^{t-\beta}\right)=\Theta\left(2^{\beta}\left(\frac{3}{2}\right)^{t-\beta} n_{t}\right)
$$

Where τ is the first index such that $s_{\tau}=0$, and β is the largest index such that $s_{\beta}=0$.

Low Diameter

Theorem (2019+, BCEKM) Given $G \neq K_{1}$ be a graph that is not the disjoint union of two cliques, and a sequence with at least two zeroes, then
$\operatorname{diam}\left(\operatorname{ILM}_{t, S}(G)\right)=3$

Low Diameter

Lemma $2 \leq \operatorname{diam}(G)=\operatorname{diam}(\operatorname{LT}(G))$ and
$2 \leq \operatorname{radius}(G)=\operatorname{radius}(\operatorname{LT}(G))$.
Proof For any $u, v \in V(G)$ with $u v \notin E(G)$
$\operatorname{dist}_{G}(u, v)=\operatorname{dist}_{L T(G)}(u, v)$ and $\operatorname{dist}_{G}(u, v)=\operatorname{dist}_{L T(G)}\left(u^{\prime}, v^{\prime}\right)$

Low Diameter

Lemma $2 \leq \operatorname{diam}(G)=\operatorname{diam}(\operatorname{LT}(G))$ and
$2 \leq \operatorname{radius}(G)=\operatorname{radius}(\operatorname{LT}(G))$.
Proof For any $u, v \in V(G)$ with $u v \notin E(G)$
$\operatorname{dist}_{G}(u, v)=\operatorname{dist}_{L T(G)}(u, v)$ and $\operatorname{dist}_{G}(u, v)=\operatorname{dist}_{L T(G)}\left(u^{\prime}, v^{\prime}\right)$
Similarly $\operatorname{dist}_{L T(G)}\left(u, v^{\prime}\right)=\operatorname{dist}_{G}(u, v)$

Low Diameter

Lemma $2 \leq \operatorname{diam}(G)=\operatorname{diam}(\operatorname{LT}(G))$ and
$2 \leq \operatorname{radius}(G)=\operatorname{radius}(\operatorname{LT}(G))$.
Proof For any $u, v \in V(G)$ with $u v \notin E(G)$
$\operatorname{dist}_{G}(u, v)=\operatorname{dist}_{L T(G)}(u, v)$ and $\operatorname{dist}_{G}(u, v)=\operatorname{dist}_{L T(G)}\left(u^{\prime}, v^{\prime}\right)$
Similarly $\operatorname{dist}_{L T(G)}\left(u, v^{\prime}\right)=\operatorname{dist}_{G}(u, v)$
When $u v \in E(G)$, $\operatorname{dist}_{L T(G)}\left(u^{\prime}, v^{\prime}\right)=2$

Low Diameter

Proof Sketch

- LAT(G) has radius at least 3 since $\operatorname{dist}\left(x, x^{*}\right) \geq 3$
- Lemma: If $\gamma(G) \geq 3$ then $\operatorname{diam}(\operatorname{LAT}(G)) \leq 3$

Low Diameter

Proof Sketch

- LAT(G) has radius at least 3 since $\operatorname{dist}\left(x, x^{*}\right) \geq 3$
- Lemma: If $\gamma(G) \geq 3$ then $\operatorname{diam}(\operatorname{LAT}(G)) \leq 3$
- We only need to consider $\gamma(G)=2$
- Find x, y whose closed neighborhoods partition the vertex set

Low Diameter

Proof Sketch

- LAT(G) has radius at least 3 since $\operatorname{dist}\left(x, x^{*}\right) \geq 3$
- Lemma: If $\gamma(G) \geq 3$ then $\operatorname{diam}(\operatorname{LAT}(G)) \leq 3$
- We only need to consider $\gamma(G)=2$
- Find x, y whose closed neighborhoods partition the vertex set
- Pairs of vertices in $N[x]$ or in $N[y]$ are distance 2.

Low Diameter

Proof Sketch

- LAT(G) has radius at least 3 since $\operatorname{dist}\left(x, x^{*}\right) \geq 3$
- Lemma: If $\gamma(G) \geq 3$ then $\operatorname{diam}(\operatorname{LAT}(G)) \leq 3$
- We only need to consider $\gamma(G)=2$
- Find x, y whose closed neighborhoods partition the vertex set
- Pairs of vertices in $N[x]$ or in $N[y]$ are distance 2.
- If $u \in N[x]$ has a neighbour in $N[y]$

Low Diameter

Proof Sketch

- LAT(G) has radius at least 3 since $\operatorname{dist}\left(x, x^{*}\right) \geq 3$
- Lemma: If $\gamma(G) \geq 3$ then $\operatorname{diam}(\operatorname{LAT}(G)) \leq 3$
- We only need to consider $\gamma(G)=2$
- Find x, y whose closed neighborhoods partition the vertex set
- Pairs of vertices in $N[x]$ or in $N[y]$ are distance 2.
- If $u \in N[x]$ has a neighbour in $N[y]$
- Otherwise, we get this picture using a counting argument and case analysis

Clustering

Theorem (2019+, BCEKM) Given a sequence with bounded gaps between zeroes, and k a constant such that there are no gaps of length k,

$$
C\left(\mathrm{ILM}_{t, S}(G)\right) \geq(1+o(1)) \frac{1}{2^{2 k+4}}
$$

Clustering

Theorem (2019+, BCEKM) Given a sequence with bounded gaps between zeroes, and k a constant such that there are no gaps of length k,

$$
C\left(\mathrm{ILM}_{t, S}(G)\right) \geq(1+o(1)) \frac{1}{2^{2 k+4}}
$$

The clustering coefficient is bounded away from zero.

Clustering

Let β_{1} and β_{2} be the two most recent 0 steps

Clustering

Let β_{1} and β_{2} be the two most recent 0 steps
If v is not a clone in $G_{\beta_{1}}$, then $\operatorname{deg}_{\beta_{1}}(v)=\frac{n_{\beta_{1}}}{2}-1$, and then

$$
\operatorname{deg}_{\beta_{1}+1}(v)=2 \operatorname{deg}_{\beta_{1}}(v)+1=\frac{n_{\beta_{1}+1}}{2}-1
$$

Clustering

Let β_{1} and β_{2} be the two most recent 0 steps
If v is not a clone in $G_{\beta_{1}}$, then $\operatorname{deg}_{\beta_{1}}(v)=\frac{n_{\beta_{1}}}{2}-1$, and then

$$
\operatorname{deg}_{\beta_{1}+1}(v)=2 \operatorname{deg}_{\beta_{1}}(v)+1=\frac{n_{\beta_{1}+1}}{2}-1
$$

Since all entries between β_{1} an β_{2} are 1 , we have, inductively that

$$
\operatorname{deg}_{\beta_{2}-1}(v)=\frac{n_{\beta_{2}-1}}{2}-1
$$

Clustering

Define two sets:

$$
\begin{gathered}
X_{\beta_{2}}=N_{\beta_{2}}(v) \cap\left(V\left(G_{\beta_{2}}\right) \backslash V\left(G_{\beta_{2}-1}\right)\right) \\
Y_{\beta_{2}}=\left(V\left(G_{\beta_{2}}\right) \backslash V\left(G_{\beta_{2}-1}\right)\right) \backslash N_{\beta_{2}}(v)
\end{gathered}
$$

With $\left|X_{\beta_{2}}\right|=\left|Y_{\beta_{2}}\right|=n_{\beta_{2}} / 4$.

Clustering

Define two sets:

$$
\begin{gathered}
X_{\beta_{2}}=N_{\beta_{2}}(v) \cap\left(V\left(G_{\beta_{2}}\right) \backslash V\left(G_{\beta_{2}-1}\right)\right) \\
Y_{\beta_{2}}=\left(V\left(G_{\beta_{2}}\right) \backslash V\left(G_{\beta_{2}-1}\right)\right) \backslash N_{\beta_{2}}(v)
\end{gathered}
$$

With $\left|X_{\beta_{2}}\right|=\left|Y_{\beta_{2}}\right|=n_{\beta_{2}} / 4$.
For transitive steps, create $X_{\beta_{2}+1}$ and $Y_{\beta_{2}+1}$ by adding the set of all respective clones to each set

Note $X_{\beta_{2}+1} \subseteq N_{\beta_{2}+1}(v)$ and $Y_{\beta_{2}+1} \cap N_{\beta_{2}+1}(v)=\emptyset$

Clustering

After an anti-transitive step, each vertex in X_{t-1} will be adjacent to each clone of vertices in Y_{t-1}.

Clustering

After an anti-transitive step, each vertex in X_{t-1} will be adjacent to each clone of vertices in Y_{t-1}.

Thus, $N_{t}(v)$ contains at least $\left|X_{t-1}\right| \cdot\left|Y_{t-1}\right|=n_{t}^{2} / 64$ edges.
Since $\operatorname{deg}_{t}(v)=\frac{n_{t}}{2}-1$, we have that

$$
c_{t}(v) \geq \frac{n_{t}^{2} / 64}{\binom{n_{t} / 2-1}{2}}=(1+o(1)) \frac{1}{8}
$$

Clustering

Note this is holds for all vertices $v \in V\left(G_{\beta_{1}-1}\right)$.
There are $n_{\beta_{1}-1} \geq n_{t-2 k-1}=\frac{n_{t}}{2^{2 k+1}}$ such vertices,

$$
C\left(G_{t}\right) \geq \frac{(1+o(1)) \frac{1}{8} \cdot \frac{n_{t}}{2^{2 k+1}}}{n_{t}}=(1+o(1)) \frac{1}{2^{2 k+4}},
$$

Spectral Gap

A the adjacency matrix and D the diagonal degree matrix of a graph G. The normalized Laplacian of G is

$$
\mathcal{L}=I-D^{-1 / 2} A D^{-1 / 2} .
$$

With eigenvalues $0=\lambda_{0} \leq \lambda_{1} \leq \cdots \leq \lambda_{n-1} \leq 2$

Spectral Gap

A the adjacency matrix and D the diagonal degree matrix of a graph G. The normalized Laplacian of G is

$$
\mathcal{L}=I-D^{-1 / 2} A D^{-1 / 2} .
$$

With eigenvalues $0=\lambda_{0} \leq \lambda_{1} \leq \cdots \leq \lambda_{n-1} \leq 2$
The spectral gap of the normalized Laplacian is defined as

$$
\lambda=\max \left\{\left|\lambda_{1}-1\right|,\left|\lambda_{n-1}-1\right|\right\} .
$$

Spectral Gap

Expander Mixing Lemma

If G is a graph with spectral gap λ, then, for all sets $X \subseteq V(G)$,

$$
\left|e(X, X)-\frac{(\operatorname{vol}(X))^{2}}{\operatorname{vol}(G)}\right| \leq \lambda \frac{\operatorname{vol}(X) \operatorname{vol}(\bar{X})}{\operatorname{vol}(G)}
$$

Where $\operatorname{vol}(X)=\sum_{v \in X} \operatorname{deg} v$ for $X \subseteq V(G)$.

Spectral Gap

After a transitive step, let $X=V\left(G_{t}\right) \backslash V\left(G_{t-1}\right)$
Since X is an independent set, $e(X, X)=0$. We derive that $\operatorname{vol}\left(G_{t}\right)=6 e_{t-1}+2 n_{t-1}$
$\operatorname{vol}(X)=2 e_{t-1}+n_{t-1}$
$\operatorname{vol}(\bar{X})=\operatorname{vol}\left(G_{t}\right)-\operatorname{vol}(X)=4 e_{t-1}+n_{t-1}$

Spectral Gap

After a transitive step, let $X=V\left(G_{t}\right) \backslash V\left(G_{t-1}\right)$
Since X is an independent set, $e(X, X)=0$. We derive that

$$
\begin{aligned}
& \operatorname{vol}\left(G_{t}\right)=6 e_{t-1}+2 n_{t-1} \\
& \operatorname{vol}(X)=2 e_{t-1}+n_{t-1} \\
& \operatorname{vol}(\bar{X})=\operatorname{vol}\left(G_{t}\right)-\operatorname{vol}(X)=4 e_{t-1}+n_{t-1}
\end{aligned}
$$

$$
\begin{aligned}
\lambda_{t} & \geq \frac{(\operatorname{vol}(X))^{2}}{\operatorname{vol}\left(G_{t}\right)} \cdot \frac{\operatorname{vol}\left(G_{t}\right)}{\operatorname{vol}(X) \operatorname{vol}(\bar{X})} \\
& =\frac{\operatorname{vol}(X)}{\operatorname{vol}(\bar{X})} \\
& =\frac{2 e_{t-1}+n_{t-1}}{4 e_{t-1}+n_{t-1}}>1 / 2
\end{aligned}
$$

Spectral Gap

After an antitransitive step, Let $X=V\left(G_{t}\right) \backslash V\left(G_{t-1}\right)$

$$
\begin{aligned}
& \operatorname{vol}\left(G_{t}\right)=2 n_{t-1}^{2}-2 e_{t-1}-2 n_{t-1} \\
& \operatorname{vol}(X)=n_{t-1}^{2}-2 e_{t-1}-n_{t-1} \\
& \operatorname{vol}(\bar{X})=\operatorname{vol}\left(G_{t}\right)-\operatorname{vol}(X)=n_{t-1}^{2}-n_{t-1}
\end{aligned}
$$

$$
\begin{aligned}
\lambda_{t} & \geq \frac{\operatorname{vol}(X)}{\operatorname{vol}(\bar{X})} \\
& =\frac{n_{t-1}^{2}-2 e_{t-1}-n_{t-1}}{n_{t-1}^{2}-n_{t-1}} \\
& =1-\frac{2 e_{t-1}}{n_{t-1}^{2}-n_{t-1}}=\frac{1}{4}-o(1)
\end{aligned}
$$

Spectral Gap

Therefore, we have that

$$
2 e_{t-1} \leq 2\binom{n_{t-1}}{2}-2\binom{n_{t-1} / 2}{2}=\frac{3}{4} n_{t-1}^{2}-\frac{1}{2} n_{t-1}
$$

Induced Subgraphs

Theorem (2019+, BCEKM) If F is a graph, then there exists some constant $t_{0}=t_{0}(F)$ such that for all $t \geq t_{0}$, all graphs G, and all binary sequences S, F is an induced subgraph of $\mathrm{ILM}_{t, s}(G)$.

Finite Subgraphs

Proof (sketch):

Show $I L T_{k}\left(K_{1}\right)$ contains induced copy of F

Finite Subgraphs

Proof (sketch):
Show $I L T_{k}\left(K_{1}\right)$ contains induced copy of F

- Find a t with a clique of size $|V(F)|$

Finite Subgraphs

Proof (sketch):

Show $I L T_{k}\left(K_{1}\right)$ contains induced copy of F

- Find a t with a clique of size $|V(F)|$
- Iteratively delete edges of the clique to form F

Finite Subgraphs

Proof (sketch):

Show $I L T_{k}\left(K_{1}\right)$ contains induced copy of F

- Find a t with a clique of size $|V(F)|$
- Iteratively delete edges of the clique to form F
- For each $u v \notin E(F)$ replace with $u^{\prime} v^{\prime}$

Finite Subgraphs

Proof (sketch):

Show $I L T_{k}\left(K_{1}\right)$ contains induced copy of F

- Find a t with a clique of size $|V(F)|$
- Iteratively delete edges of the clique to form F
- For each $u v \notin E(F)$ replace with $u^{\prime} v^{\prime}$

Show $I L M_{2 r, s}(G)$ contains $I L T_{r}\left(K_{1}\right)$, by induction.

- One transitive step will increase the r for the induced copy of ILT

Finite Subgraphs

Proof (sketch):

Show $\operatorname{ILT} T_{k}\left(K_{1}\right)$ contains induced copy of F

- Find a t with a clique of size $|V(F)|$
- Iteratively delete edges of the clique to form F
- For each $u v \notin E(F)$ replace with $u^{\prime} v^{\prime}$

Show $I L M_{2 r, s}(G)$ contains $I L T_{r}\left(K_{1}\right)$, by induction.

- One transitive step will increase the r for the induced copy of ILT
- Two anti-transitive steps will similarily increase the induced copy of ILT

Finite Subgraphs

Proof (sketch):

Show $I L T_{k}\left(K_{1}\right)$ contains induced copy of F

- Find a t with a clique of size $|V(F)|$
- Iteratively delete edges of the clique to form F
- For each $u v \notin E(F)$ replace with $u^{\prime} v^{\prime}$

Show $I L M_{2 r, s}(G)$ contains $I L T_{r}\left(K_{1}\right)$, by induction.

- One transitive step will increase the r for the induced copy of ILT
- Two anti-transitive steps will similarily increase the induced copy of ILT
- In any binary sequence of length $2 r$ there exist $r 0 \mathrm{~s}$ or $r 1 \mathrm{~s}$.

Hamiltonicity

Theorem For $G \neq K_{1}$ and S a binary sequence with at least two non-consecutive zeros, then $\operatorname{ILM}_{t, S}(G)=G_{t}$ is Hamiltonian.

Hamiltonicity

Theorem For $G \neq K_{1}$ and S a binary sequence with at least two non-consecutive zeros, then $\operatorname{ILM}_{t, S}(G)=G_{t}$ is Hamiltonian.

Definition Let $\zeta(G)$ be the first value such that $I L T_{\zeta(G)}$ is Hamiltonian, and let ζ_{n} be the maximum over all graphs of order n.

Hamiltonicity

Theorem For $G \neq K_{1}$ and S a binary sequence with at least two non-consecutive zeros, then $\operatorname{ILM}_{t, s}(G)=G_{t}$ is Hamiltonian.

Definition Let $\zeta(G)$ be the first value such that $I L T_{\zeta(G)}$ is Hamiltonian, and let ζ_{n} be the maximum over all graphs of order n.

Theorem For all $n \geq 3$

$$
\log _{2}(n-1) \leq \zeta_{n} \leq\left\lceil\log _{2}(n-1)\right\rceil+1
$$

Hamiltonicity

Proof (sketch):

- Using $\Delta\left(G_{t}\right)=\frac{n_{t}}{2}-1$, the compliment of G_{t} is Hamiltonian by Dirac's theorem

Hamiltonicity

Proof (sketch):

- Using $\Delta\left(G_{t}\right)=\frac{n_{t}}{2}-1$, the compliment of G_{t} is Hamiltonian by Dirac's theorem
- Four clone vertices form a clique in the HC of \bar{G}_{t}

Hamiltonicity

Proof (sketch):

- Using $\Delta\left(G_{t}\right)=\frac{n_{t}}{2}-1$, the compliment of G_{t} is Hamiltonian by Dirac's theorem
- Four clone vertices form a clique in the HC of \bar{G}_{t}
- Find two cycles that partition the vertex set and perform an edge switch

Other Structural Properties

For the model with certain restrictions on the input sequence and graph:

- $\chi(G)+t-1 \leq \chi\left(\operatorname{ILM}_{t, S}(G)\right) \leq \chi(G)+t$
- $\gamma\left(\operatorname{ILM}_{t, s}(G)\right) \leq 3$

Future Directions

- Graph Limits
- Domination number in remaining cases
- Randomization of the model
- Improve Clustering, still unknown for ILAT

Thank You

