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Complex Networks

Figure: The Web Graph
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Complex Networks

Five main properties:

1. Large-scale
2. Evolving over time
3. Power law degree distribution
4. Small world property
5. Densification
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Power Law Degree Distribution

Degree Distribution: {Nk ,G : 0 ≤ k ≤ n}

Nk ,G = |{x ∈ V (G) : degG(x) = k |

Power Law: for 1 < β ∈ R, and interval of k ∈ N

Nk ,G

n
≈ k−β .
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Small World Property

The average distance is

L(G) =

󰁓
u,v∈V (G) d(u, v)

󰀃|V (G)|
2

󰀄

The clustering coefficient of G is defined as follows:

C(G) =
1

|V (G)|
󰁛

x∈V (G)

Cx(G), where Cx(G) =

󰀏󰀏E
󰀃
G[NG(x)]

󰀄󰀏󰀏
󰀃deg(x)

2

󰀄 .
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Densification

A sequence of graphs{Gt : t ∈ N} densifies over time if

lim
t→∞

|E(Gt)|
|V (Gt)|

→ ∞
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Zachary Karate Club
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Preferential Attachment Model

Preferential Attachment Model (2002, Barabasi, Albert)

Input: G0, m ∈ N

Iterate:
Add a new node v , with m neighbours.

Each neighbour ui is chosen independently using preferential
attachment, that is the edge uiv is added with probability

pi =
deg(ui)󰁓

uj∈V (G) deg(uj)
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Preferential Attachment Model

ACL Preferential Attachment Model (2008, Aiello, Chung, Lu)

Input: p ∈ [0, 1]

pi =
deg(ui)󰁓

uj∈V (G) deg(uj)

Vertex Step: add a new node v , and add the edge uiv with
probability pi as above

Edge Step: add a new edge rs, where both nodes r , s are
chosen by preferential attachment

With probability p take a vertex step, and with probability 1 − p
take an edge step.
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Structural Balance Theory

Representing adversarial relationships with (−) and friendly
relationships with (+), Structural Balance Theory says triads
seek a positive product of edge signs, called closure.
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ILT

Iterated Local Transitivity Model (ILT) (2009, Bonato, Hadi,
Horn, Prałat, Wang)

Input: G0

To form Gt at time t clone each x ∈ V (Gt−1) by adding a new
node x ′ such that

NGt (x
′) = NGt−1 [x ]
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Example of ILT

v u

u′v ′

uv

Figure: Example of one time step of ILT with G0 = K2.
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Iterated Local Anti-Transitivity

Iterated Local Anti-Transitivity Model (ILAT) (2017, Bonato,
Infeld, Pokhrel, Prałat)

Input: G0

To form Gt at time t anti-clone each x ∈ V (Gt−1) by adding new
node x∗ such that

NGt (x
∗) = V (Gt−1)\NGt−1 [x ]
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Example of ILAT

a b

cd

a b

cd

d∗ c∗

a∗ b∗

Figure: Example of one time step ILAT.
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ILM

Iterated Local Model (ILM) (2019+, Bonato, Chuangpishit,
English, Kay, M.)
Input: G0 and S = {bi}i∈N, where bi ∈ {0, 1}

To form ILMt ,S(G0) at time t :
• if bt = 1 add a clone x ′ for each x ∈ V (Gt−1) with

NGt (x
′) = NGt−1 [x ]

• if bt = 0 add an anti-clone x∗ for each x ∈ V (Gt−1) with

NGt (x
∗) = V (Gt−1)\NGt−1 [x ]
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Example of ILM

u v

u′v ′

u v

v ′u′

u′∗ v ′∗

u∗ v∗

uv

Figure: Example of ILM using G0 = K2 and S = {1, 0, ...}
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Size, Evolution, and Densification

Theorem (2019+, BCEKM) Given any graph, G0, and any
binary sequence, S, with at least one zero, then at time step t

|E(ILMt ,S(G))| = Θ

󰀣
2t+β

󰀕
3
2

󰀖t−β
󰀤

= Θ

󰀣
2β

󰀕
3
2

󰀖t−β

nt

󰀤

Where τ is the first index such that sτ = 0, and β is the largest
index such that sβ = 0.
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Low Diameter

Theorem (2019+, BCEKM) Given G ∕= K1 be a graph that is not
the disjoint union of two cliques, and a sequence with at least
two zeroes, then

diam(ILMt ,S(G)) = 3
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Low Diameter

Lemma 2 ≤ diam(G) = diam(LT(G)) and
2 ≤ radius(G) =radius(LT(G)).

Proof For any u, v ∈ V (G) with uv /∈ E(G)

distG(u, v) = distLT (G)(u, v) and distG(u, v) = distLT (G)(u′, v ′)

Similarly distLT (G)(u, v ′) = distG(u, v)

When uv ∈ E(G), distLT (G)(u′, v ′) = 2
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Low Diameter

Proof Sketch
• LAT(G) has radius at least 3 since dist(x , x∗) ≥ 3
• Lemma: If γ(G) ≥ 3 then diam(LAT(G)) ≤ 3

• We only need to consider γ(G) = 2
• Find x , y whose closed neighborhoods partition the vertex

set
• Pairs of vertices in N[x ] or in N[y ] are distance 2.
• If u ∈ N[x ] has a neighbour in N[y ]
• Otherwise, we get this picture using a counting argument

and case analysis
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Clustering

Theorem (2019+, BCEKM) Given a sequence with bounded
gaps between zeroes, and k a constant such that there are no
gaps of length k ,

C(ILMt ,S(G)) ≥ (1 + o(1))
1

22k+4 .

The clustering coefficient is bounded away from zero.
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Clustering

Let β1 and β2 be the two most recent 0 steps

If v is not a clone in Gβ1 , then degβ1
(v) =

nβ1
2 − 1, and then

degβ1+1(v) = 2degβ1
(v) + 1 =

nβ1+1

2
− 1.

Since all entries between β1 an β2 are 1, we have, inductively
that

degβ2−1(v) =
nβ2−1

2
− 1.
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Clustering

Define two sets:

Xβ2 = Nβ2(v) ∩ (V (Gβ2) \ V (Gβ2−1))

Yβ2 = (V (Gβ2) \ V (Gβ2−1)) \ Nβ2(v)

.
With |Xβ2 | = |Yβ2 | = nβ2/4.

For transitive steps, create Xβ2+1 and Yβ2+1 by adding the set
of all respective clones to each set

Note Xβ2+1 ⊆ Nβ2+1(v) and Yβ2+1 ∩ Nβ2+1(v) = ∅
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Clustering

After an anti-transitive step, each vertex in Xt−1 will be adjacent
to each clone of vertices in Yt−1.

Thus, Nt(v) contains at least |Xt−1| · |Yt−1| = n2
t /64 edges.

Since degt(v) =
nt
2 − 1, we have that

ct(v) ≥
n2

t /64󰀕
nt/2 − 1

2

󰀖 = (1 + o(1))
1
8
.
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Clustering

Note this is holds for all vertices v ∈ V (Gβ1−1).

There are nβ1−1 ≥ nt−2k−1 = nt
22k+1 such vertices,

C(Gt) ≥
(1 + o(1))

1
8
· nt

22k+1

nt
= (1 + o(1))

1
22k+4 ,

□
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Spectral Gap

A the adjacency matrix and D the diagonal degree matrix of a
graph G. The normalized Laplacian of G is

L = I − D−1/2AD−1/2.

With eigenvalues 0 = λ0 ≤ λ1 ≤ · · · ≤ λn−1 ≤ 2

The spectral gap of the normalized Laplacian is defined as

λ = max{|λ1 − 1|, |λn−1 − 1|}.
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Spectral Gap

Expander Mixing Lemma

If G is a graph with spectral gap λ, then, for all sets X ⊆ V (G),

󰀏󰀏󰀏󰀏e(X ,X )− (vol(X ))2

vol(G)

󰀏󰀏󰀏󰀏 ≤ λ
vol(X )vol(X )

vol(G)
.

Where vol(X) =
󰁓

v∈X degv for X ⊆ V (G).
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Spectral Gap

After a transitive step, let X = V (Gt) \ V (Gt−1)

Since X is an independent set, e(X ,X ) = 0. We derive that

vol(Gt) = 6et−1 + 2nt−1

vol(X ) = 2et−1 + nt−1

vol(X ) = vol(Gt)− vol(X ) = 4et−1 + nt−1

λt ≥
(vol(X ))2

vol(Gt)
· vol(Gt)

vol(X )vol(X )

=
vol(X )

vol(X )

=
2et−1 + nt−1

4et−1 + nt−1
> 1/2
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Spectral Gap

After an antitransitive step, Let X = V (Gt)\V (Gt−1)
vol(Gt) = 2n2

t−1 − 2et−1 − 2nt−1

vol(X ) = n2
t−1 − 2et−1 − nt−1

vol(X ) = vol(Gt)− vol(X ) = n2
t−1 − nt−1.

λt ≥
vol(X )

vol(X )

=
n2

t−1 − 2et−1 − nt−1

n2
t−1 − nt−1

= 1 − 2et−1

n2
t−1 − nt−1

=
1
4
− o(1)
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Spectral Gap

Therefore, we have that

2et−1 ≤ 2
󰀕

nt−1

2

󰀖
− 2

󰀕
nt−1/2

2

󰀖
=

3
4

n2
t−1 −

1
2

nt−1,

□
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Induced Subgraphs

Theorem (2019+, BCEKM) If F is a graph, then there exists
some constant t0 = t0(F ) such that for all t ≥ t0, all graphs G,
and all binary sequences S, F is an induced subgraph of
ILMt ,S(G).
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Finite Subgraphs

Proof (sketch):
Show ILTk (K1) contains induced copy of F

• Find a t with a clique of size |V (F )|
• Iteratively delete edges of the clique to form F
• For each uv /∈ E(F ) replace with u′v ′

Show ILM2r ,S(G) contains ILTr (K1), by induction.
• One transitive step will increase the r for the induced copy

of ILT
• Two anti-transitive steps will similarily increase the induced

copy of ILT
• In any binary sequence of length 2r there exist r 0s or r 1s.
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Hamiltonicity

Theorem For G ∕= K1 and S a binary sequence with at least two
non-consecutive zeros, then ILMt ,S(G) = Gt is Hamiltonian.

Definition Let ζ(G) be the first value such that ILTζ(G) is
Hamiltonian, and let ζn be the maximum over all graphs of order
n.

Theorem For all n ≥ 3

log2(n − 1) ≤ ζn ≤ ⌈log2(n − 1)⌉+ 1
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Hamiltonicity

Proof (sketch):
• Using ∆(Gt) =

nt
2 − 1, the compliment of Gt is Hamiltonian

by Dirac’s theorem

• Four clone vertices form a clique in the HC of Gt

• Find two cycles that partition the vertex set and perform an
edge switch
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Other Structural Properties

For the model with certain restrictions on the input sequence
and graph:

• χ(G) + t − 1 ≤ χ
󰀃
ILMt ,S(G)

󰀄
≤ χ(G) + t

• γ(ILMt ,S(G)) ≤ 3
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Future Directions

• Graph Limits
• Domination number in remaining cases
• Randomization of the model
• Improve Clustering, still unknown for ILAT
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Thank You


